
龔承林,男,教授,博士生導師,2014年獲中國石油大學(北京)博士學位、2014年至2017年在美國得州大學奧斯汀分校從事博士后研究;榮獲中國地質協會沉積地質專業委員會第一屆中國孫樞獎、國際沉積學家協會(IAS)第二屆國際孫樞獎(全球每2年評選1次,每次評選2人)、第19屆侯德封礦物巖石地球化學青年科學家獎和中海石油(中國)有限公司2023年度勘探優秀外協團隊。
任AAPG Bulletin和Journal of Sedimentary Research副主編(Associate Editor)、《沉積學報》執行副主編、第十一屆中國地質學會沉積地質專業委員會委員和《古地理學報》編委。
主要從事地震解釋、深水沉積與層序源匯方面的教學和科研工作;專注于深海沉積過程及其資源效應的深水沉積學研究,在深海沉積過程和深水源匯系統方面取得系列創新成果。針對深海沉積過程:揭示了重力流與底流相互作用的沉積模式,突破了深海沉積過程的沉積機制,開拓了深海油氣勘探新領域。針對深水源匯系統:揭示了深水源匯系統的過程響應與驅動機制,提出了陸架邊緣多元耦合控砂機制,揭示了華南-珠江口盆地源匯過程及其物源-構造-氣候響應。以第一或通訊作者在《Geology》(3篇)、《GSA Bulletin》(4篇)、《Earth-Science Reviews》(2篇)、《Basin Research》(3篇)、《AAPG Bulletin》(5篇)、《Sedimentary Geology》(6篇)、《Journal of Sedimentary Research》(3篇)和《Sedimentology》等國際重要刊物上發表論文42篇(自然指數刊物4篇、一區Top刊物9篇),研究成果得到國內外同行較高評價、被《Geology》等SCI刊物引用1000余次。主編國際通用沉積學教材《Reading’s Sedimentary Environments》(第三版由前IAS主席主編)第四版第六章,以第一作者出版專著1部(科學出版社)、教材1部(石油工業出版社)。作會議邀請報告6次、擔任會議召集人9次,獲教育部科技進步獎一等獎和二等獎各1項。主持自然科學基金項目2項,企業橫向課題近20項;獲發明專利3項。
Email:chenglingong@cup.edu.cn, chenglingong@hotmail.com 電話:18810061083
1. 團隊建設與研究生培養
課題組現有博士研究生6人、碩士研究生13人;已畢業博士3人(高等院校2人、中石油1人)、碩士9人(碩博連讀3人、讀博1人、中石油2人、中海油1人、中石化1人)。與美國得州大學奧斯汀分校Ronald J Steel教授(博士后合作導師)課題組有實質的合作關系,可以為有志于從事“深水沉積、層序源匯與地震解釋”相關研究的同學提供良好的科研平臺和發展機遇。熱忱歡迎有志于學術和深水沉積研究的同學加入課題組,愿同同學們一道探索深水沉積學奧秘、盡我所能愿做春泥、甘為人梯。
2. 科研項目
在研項目:
(1)南海油氣成藏機制與勘探開發關鍵技術(2025ZD1402700)課題2專題3(2025ZD1402703),瓊東南盆地深水區伸展構造-沉積動力相互作用及規模砂體形成機制,2025-2030,主持
(2)中海石油(中國)有限公司天津分公司課題,渤海中南部明下段沉積體系演化規律與規模性砂體發育模式研究,2024-2025,主持
(3)中海石油(中國)有限公司上海分公司課題,平湖斜坡帶平湖組地震沉積學優化研究,2025-2026,主持
結題項目:
(1)國家自然科學基金面上項目,珠江峽谷末次冰期以來濁流活動對氣候變化的響應尺度與反饋機制(41972100),2020-2023,主持
(2)國家自然科學基金青年科學基金項目,中更新世以來珠江陸架邊緣三角洲-海底扇“源-匯同步”的形成機制(41802117),2019-2021,主持
(3)中海石油(中國)有限公司海南分公司課題,“順德凹陷構造-沉積特征及成藏條件研究”中的“專題2:順德凹陷沉積充填及優質烴源巖和儲蓋組合分布”,2023-2024,主持
(4)中海石油(中國)有限公司海南分公司課題,瓊東南盆地深水區重點區帶優質儲層分布預測,2023-2024,主持
(5)中海石油深海開發有限公司課題,白云凹陷珠江組陸架坡折帶差異控砂機理與巖性圈閉發育條件研究,2023-2023,主持
(6)中國石油化工股份有限公司上海海洋油氣分公司,49/09區塊梅山組海底扇發育模式及沉積微相研究,2023-2023,主持
(7)中國石油化工股份有限公司石油勘探開發研究院課題,菩提瓜爾盆地深水濁積體系及濁積砂體儲層預測,2021-2023,主持
(8)中石油南方公司課題,福山凹陷重點領域綜合地質研究與預探目標評價,2021-2023,主持
(9)中海石油(中國)有限公司海南分公司課題,瓊東南盆地中央峽谷水道壁特征及其控藏作用研究,2022-2022,主持
(10)中海石油(中國)有限公司天津分公司課題,渤南低凸起北部古近系巖性圈閉分布、成藏機理分析及有利區帶預測,2020-2022,主持
(11)中國石油化工股份有限公司石油勘探開發研究院課題,南大西洋鹽構造演化及其對上覆沉積的控制—以下剛果盆地為例,2019-2020,主持
(12)中石油杭州地質研究所課題,深水水道-天然堤體系復合體沉積儲層分布模式與形成機制研究,2019-2020,主持
(13)中海石油(中國)東海石油天然氣作業公司課題,西湖凹陷杭州斜坡帶古近系成藏條件及勘探方向研究,2018-2019,主持
3. 代表性科研成果(* = 通訊作者)
專著教材:
(1)龔承林,王英民,2023. 深海重力流與底流交互作用. 北京:科學出版社,2023:1-240(316千字).
(2)王英民,龔承林. 地震解釋原理與應用. 北京:石油工業出版社,2023:1-344(560千字).
(3)Gong, C., Li, S., Steel, R.J., Yu, X., Buatois, L.A., Zhu, X., 2023. Lake Environments. In: Levell, B.K., Johnson, H., (Eds.), Reading’s Sedimentary Environments: Processes, Facies and Stratigraphy, 4th Edition (國際通用沉積學教材,第三版由前國際沉積學會主席Harold Reading教授主編).
發明專利:
(1)龔承林,彭旸. 深海水道儲層快速評價方法、裝置及計算機設備(發明專利),專利號:ZL 2021 1 1262807.9
(2)龔承林,李東偉. 源匯系統物源區定量恢復方法和系統(發明專利),專利號:ZL 2022 1 1395689.3
(3)龔承林,劉濮毓,李東偉. 無井約束確定深水扇富砂區的方法與系統(發明專利),專利號:ZL 2022 1 0288022.7
學術論文:
(1)龔承林*,徐長貴,尤麗,2024. 深海重力流與底流交互作用的沉積響應及其勘探意義.礦物巖石地球化學通報, v. 43 (04): 721-733.
(2)徐長貴,龔承林*,2023. 從層序地層走向源匯系統的儲層預測之路.石油與天然氣地質, v. 44 (03), p. 521-538.
(3)龔承林*,齊昆,徐杰,劉喜停,王英民,2021. 深水源-匯系統對多尺度氣候變化的過程響應與反饋機制.沉積學報, 39 (01), p. 231–252.
(4)Li, Y., Gong, C*., Qiu, X., Colin, C., Barbarand, J., Li, D., Ge, D., 2025. Limited Effect of the Pearl River on the Pearl River Mouth Basin Before the Early Miocene. Basin Research, v. 37: e70045.
(5)Xu, C., Gong, C*., Steel, R.J., Zhang, X., Guan, D., Li, D., 2025. Predicting the occurrence and development of regionally extensive sublacustrine fans in the Oligocene Bohai Bay Basin: From sequence stratigraphy to source-to-sink systems. AAPG Bulletin, v. 109, p. 307–334.
(6)Li, Y., Gong, C*., Qiu, X., Breitfeld, H.T., Barbarand, J., Colin, C., 2024. Provenance history of the eastern Pearl River Mouth Basin: Implications for the evolution of the South China margin. GSA Bulletin, v. 136, p. 5191–5207.
(7)Li, Y., Gong, C.*., Peng, G., Qiu, X., Steel, R.J., Xiao, Z., He, Y., Qi, K., Yu, Y., 2023. Detrital zircon signals of the late Eocene provenance change of the Pearl River Mouth Basin, northern South China Sea. Sedimentary Geology, v. 451, p. 106409.
(8)Gong, C*., Li, D., Steel, R.J., 2023. Sediment waves control origins of submarine canyons: COMMENT. Geology, v. 48, p. 562–562.
(9)Li, D., Gong, C*., Fan, G., Steel, R.J., Ge, D., Shao, D., Ding, L., 2023. Morphological and architectural evolution of submarine channels: An example from the world’s largest submarine fan in the Bay of Bengal. Marine and Petroleum Geology, v. 155, p. 106368.
(10)Qi, K., Gong, C*., Zhang, J., Andresen, K.J., Jin, Z., 2022. Relative sea-level control on the building of two distinct shelf-margin clinothems on the late-Quaternary Pearl River margin: Insights from numerical stratigraphic forward modelling. Basin Research, v. 35, p. 842–864.
(11)Gong, C*., Steel, R.J., Qi, K., Wang, Y., 2021. Deep-water channel morphologies, architectures, and population densities in relation to stacking trajectories and climate states. GSA Bulletin, v. 133, p. 287–306.
(12)Gong, C*., Li, D., Steel, R.J., Peng, Y., Xu, S., Wang, Y., Yu, Y., 2021. Delta-to-fan source-to-sink coupling as a fundamental control on the delivery of coarse clastics to deepwater: Insights from stratigraphic forward modelling. Basin Research, v. 33, p. 2960–2983.
(13)Gong, C., Steel, R.J., Wang, Y., 2020. Channel-levee evolution in combined contour current–turbidity current flows from flume-tank experiments: COMMENT. Geology, v. 48, p. 507-507.
(14)Gong, C*., Sztanó, O., Steel, R.J., Xian, B., Galloway, W., Bada, G., Qiang, X., 2019. Critical differences in sediment delivery and partitioning between marine and lacustrine basins. GSA Bulletin, v. 131, p. 766–781.
(15)Gong, C*., Blum, M.D., Wang, Y., Lin, C**., Qiang, X., 2018. Can climatic signals be discerned in the deepwater sink?: An answer from the Pearl River sediment-routing system. GSA Bulletin, v. 130, p. 661–677, doi.org /10.1130 /B31578.1.
(16)Gong, C., Wang, Y., Rebesco, M., Salon, S., Steel, R.J., 2018. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels? Geology, v. 46, p. 551–554.
(17)Gong, C*., Peakall, J., Wang, Y., Wells, M.G., Xu, J., 2017. Flow processes and sedimentation in contourite channels on the northwestern South China Sea margin: A joint 3D seismic and oceanographic perspective. Marine Geology, v. 393, p. 176–193.
(18)Gong, C., Wang, Y., Steel, R.J., Peakall, J., Zhao, X., Sun, Q., 2016. Flow processes and sedimentation in unidirectionally migrating deep-water channels: From a 3D seismic perspective. Sedimentology, v. 63, p. 645–66.
(19)Gong, C*., Steel, R.J., Wang, Y., Lin, C., Olariu, C., 2016. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas. Earth-Science Reviews, v. 154, p. 72–101.
(20)Gong, C*., Steel, R.J., Wang, Y., Lin, C., Olariu, C., 2016. Grain size and transport regime at shelf edge as fundamental controls on delivery of shelf-edge sands to deepwater. Earth-Science Reviews, v. 157, p. 32–60.
(21)Gong, C., Wang, Y., Steel, R.J., Olariu, C., Xu, Q., Liu, X., Zhao, Q., 2015. Growth styles of shelf-margin clinoforms: Prediction of sand- and sediment-budget partitioning into and across the shelf. Journal of Sedimentary Research, v. 85, p. 209–229.
(22)Gong, C., Wang, Y*., Pyles, D.R., Steel, R.J., Xu, S., Xu, Q., Li, D., 2015. Shelf-edge trajectories and stratal stacking patterns: Their sequence-stratigraphic significance and relation to styles of deep-water sedimentation and amount of deep-water sandstone. AAPG Bulletin, v. 99, p. 1211–1243.
(23)Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q., 2013. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea. AAPG Bulletin, v. 97, p. 285–308.
(24)Gong, C*., Wang, Y., Peng, X., Li, W., Qiu, Y., Xu, S., 2012. Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South China Sea. Marine and Petroleum Geology, v. 32, p. 95–109.
(25)Gong, C*., Wang, Y., Zhu, W., Li, W., Xu, Q., Zhang, J., 2011. The central submarine canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Marine and Petroleum Geology, v. 28, p. 1690–1702.