
姓名: 姚約東
職稱: 教授、博導
教育與工作經歷:
1991-1995 中國石油大學(華東) 本科
1995-1997 中國石油大學(北京) 碩士研究生
1997-2000 中國石油大學(北京) 博士研究生
2011-2012 美國Colorado School of Mines大學 訪問學者
2011-現在 中國石油大學(北京) 教授
電子郵箱: yaoyuedong@cup.edu.cn
聯系電話: 010-89732216,13611279382
所在系所: 油氣田開發工程系
教學情況:先后主講《油藏工程》、《油層物理與油藏工程》、《氣藏工程》、《油氣田開發》和《現代試井分析》等課程,其中《油藏工程》課程為北京市精品課程。參與編著的博士生教材《現代油藏滲流力學原理》被北京市教委評為精品教材,連續獲得中國石油大學(北京)第六屆和第七屆優秀教學成果一等獎,被評為全國石油工程設計大賽優秀指導教師。被授予中國石油大學(北京)“優秀教師”、“科技創新優秀指導教師”、“本科畢業設計優秀指導教師”、“優秀碩士學位論文指導教師”和“優秀博士學位論文指導教師”等榮譽稱號,被聘請為中國石油大學(北京)第八屆校學術委員會委員,入選教育部“新世紀優秀人才”。
研究方向: 油藏工程, 油氣滲流理論與應用, 非常規油氣田開發
近期代表性論文著作:
[1] A novel high-dimension shale gas reservoir hydraulic fracture network parameters optimization framework[J]. Geoenergy Science and Engineering, 2023, 229: 212155.
[2] An integrated approach for history matching of complex fracture distributions for shale oil reservoirs based on improved adaptive particle filter[J]. SPE Journal, 2023, 28(02): 594-613.
[3] A critical review on intelligent optimization algorithms and surrogate models for conventional and unconventional reservoir production optimization[J]. Fuel, 2023, 350: 128826.
[4] CO2驅氣體賦存特征微觀可視化實驗 [J]. 石油鉆采工藝, 2023, 45 (3):358-367.
[5] 低滲透-致密砂巖油藏水相啟動壓力梯度實驗測試方法 [J]. 油氣地質與采收率, 2023, 30 (3):87-93.
[6] Integrated optimization design for horizontal well spacing and fracture stage placement in shale gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2022, 105: 104706.
[7] A hybrid surrogate-assisted integrated optimization of horizontal well spacing and hydraulic fracture stage placement in naturally fractured shale gas reservoir[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110842.
[8] Data-driven multi-objective optimization design method for shale gas fracturing parameters. Journal of Natural Gas Science and Engineering, 2022: 104420.
[9] A novel self-adaptive multi-fidelity surrogate-assisted multi-objective evolutionary algorithm for simulation-based production optimization. Journal of Petroleum Science and Engineering, 2022: 110111.
[10] Hybrid application of unsupervised and supervised learning in forecasting absolute open flow potential for shale gas reservoirs. Energy, 2022, 243: 122747.
[11] 基于代理輔助野草猴群算法的井位優快決策方法 [J]. 大慶石油地質與開發, 2022, 41 (5): 93-100.
[12] 基于三維嵌入式離散裂縫模型的致密油藏體積壓裂水平井數值模擬 [J]. 大慶石油地質與開發, 2022, 41 (06):143-152.
[13] A novel surrogate-assisted multi-objective optimization method for well control parameters based on tri-training. Natural Resources Research, 2021: 1-17.
[14] 川西潮坪相裂縫型碳酸鹽巖分層酸壓井壓力動態分析. 巖性油氣藏, 2020, 032(01): 152-160.
[15] A slip-flow model for oil transport in organic nanopores. Journal of Petroleum Science and Engineering, 2019, 172: 139-148. (ESI高被引論文)
[16] Transport behaviors of real gas mixture through nanopores of shale reservoir. Journal of Petroleum Science and Engineering, 2019, 177: 1134-1141.
[17] 潮坪相碳酸鹽巖酸壓改造油井壓力動態特征. 石油鉆采工藝, 2019, 41(04): 541-548.
[18] Simulation of real gas mixture transport through aqueous nanopores during the depressurization process considering stress sensitivity. Journal of Petroleum Science and Engineering, 2019, 178: 829-837.
[19] A numerical model for wet steam circulating in horizontal wellbores during starting stage of the steam-assisted-gravity-drainage process. Heat and Mass Transfer, 2019, 8: 2209-2220.
[20] The Heat and Mass Transfer Characteristics of Superheated Steam Coupled with Non-condensing Gases in Horizontal Wells with Multi-point Injection Technique. Energy, 2018, 143: 995-1005. (ESI高被引論文,ESI熱點論文)
[21] Effect of Friction Work on Key Parameters of Steam at Different State in Toe-point Injection Horizontal Wellbores. Journal of Petroleum Science and Engineering, 2018, 164: 655-662. (ESI高被引論文,ESI熱點論文)
[22] Analysis of Superheated Steam Performance in Offshore Concentric Dual-tubing Wells. Journal of Petroleum Science and Engineering, 2018, 166: 984-999. (ESI高被引論文,ESI熱點論文)
[23] An Improved Two-phase Model for Saturated Steam Flow in Multi-point Injection Horizontal Wells under Steady-state Injection Condition. Journal of Petroleum Science and Engineering, 2018, 167: 844-856. (ESI熱點論文)
[24] Effect of Flowing Seawater on Supercritical CO2 - Superheated Water Mixture Flow in an Offshore Oil Well Considering the distribution of heat generated by the work of friction. Journal of Petroleum Science and Engineering, 2018, 162: 460-468. (ESI高被引論文)
[25] Flow Simulation of the Mixture System of Supercritical CO2 & Superheated Steam in Toe-point Injection Horizontal wellbores. Journal of Petroleum Science and Engineering, 2018, 163: 199-210. (ESI高被引論文)
[26] A Numerical Model for Predicting Distributions of Pressure and Temperature of Superheated Steam in Multi-point Injection Horizontal Wells. International Journal of Heat and Mass Transfer, 2018, 121: 282-289. (ESI高被引論文)
[27] Exploitation of Heavy Oil by Supercritical CO2: Effect Analysis of Supercritical CO2 on H2O at Superheated State in Integral Joint Tubing and Annuli. Greenhouse Gases: Science and Technology, 2018, 8(3): 557-569. (ESI高被引論文)
[28] Type curve analysis of multi-phase flow of multi-component thermal fluid in toe-point injection horizontal wells considering phase change. Journal of Petroleum Science and Engineering, 2018, 165: 557-566. (ESI高被引論文)
[29] Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency. Energy, 2017, 125: 795-804. (ESI高被引論文)
[30] A numerical approach for obtaining type curves of superheated multi-component thermal fluid flow in concentric dual-tubing wells. International Journal of Heat and Mass Transfer, 2017, 111: 41-53. (ESI高被引論文)
[31] The flow and heat transfer characteristics of superheated steam in offshore wells and analysis of superheated steam performance. Computers &Chemical Engineering, 2017, 100: 80-93. (ESI高被引論文)
[32] Type Curve Analysis of Superheated Steam Flow in Offshore Horizontal wells. International Journal of Heat and Mass Transfer, 2017, 113: 850-860. (ESI高被引論文)
[33] The Mass and Heat Transfer Characteristics of Superheated Steam Coupled with Non-condensing Gases in Perforated Horizontal Wellbores. Journal of Petroleum Science and Engineering, 2017, 156: 460-467. (ESI高被引論文)
[34] The flow and heat transfer characteristics of superheated steam in concentric dual-tubing wells. International Journal of Heat and Mass Transfer, 2017, 115: 1099-1108. (ESI高被引論文)
[35] A Fractal Model for Oil Transport in Tight Porous Media. Transport in Porous Media, 2018, 121: 725-739.
[36] Pressure transient analysis of multi-fractured horizontal wells in tight oil reservoirs with consideration of stress sensitivity. Arabian Journal of Geosciences, 2018, 11(11): 285.
[37] Numerical Simulation of Supercritical-Water Flow in Concentric-Dual-Tubing Wells. SPE Journal, 2018, 23(6): 2188–2201.
[38] Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells. Energy, 2018, 158: 760-773.
[39] A coupled model for CO2 & superheated steam flow in full-length concentric dual-tube horizontal wells to predict the thermophysical properties of CO2 & superheated steam mixture considering condensation. Journal of Petroleum Science and Engineering, 2018, 170: 151-165.
[40] Performance of geothermal energy extraction in a horizontal well by using CO2 as the working fluid. Energy Conversion and Management, 2018, 171: 1529-1539.
[41] Geothermal energy development by circulating CO2 in a U-shaped closed loop geothermal system. Energy Conversion and Management, 2018, 174: 971-982.
[42] Analytical model for production performance analysis of multi-fractured horizontal well in tight oil reservoirs. Journal of Petroleum Science and Engineering, 2017, 158:380-397.
[43] A Numerical Study on the Non-isothermal Flow Characteristics of Superheated Steam in Ground Pipelines and Vertical Wellbores. Journal of Petroleum Science and Engineering, 2017, 159:68-75.
[44] 致密油藏體積壓裂水平井不穩定壓力分析. 水動力學研究與進展: A輯, 2017, 32(4): 491-501.
[45] 稠油油藏蒸汽吞吐水平井生產動態分析. 斷塊油氣田, 2017, 24(1): 83-86.
[46] 過熱蒸汽吞吐水平井加熱半徑及產能預測模型. 特種油氣藏, 2017, 24(02): 120-124.
[47] Analytical method for performance evaluation of fractured horizontal wells in tight reservoirs. Journal of Natural Gas Science & Engineering, 2016, 33:419-426.
[48] An improved model for the prediction of liquid loading in gas wells. Journal of Natural Gas Science & Engineering, 2016,32:198-204.
[49] 裂縫性致密油藏非穩態竄流規律. 斷塊油氣田, 2016, 23(3): 329-333.
[50] Potential of carbon dioxide miscible injections into the H-26 reservoir. Journal of Natural Gas Science & Engineering, 2016, 34: 1085-1095.
主要科研項目:
1、 中石油, 超深高凝油藏高效開發技術政策優化研究
2、 中石油, 吉木薩爾凹陷蘆草溝組頁巖油水平井壓后燜井及排采生產方式優化
3、 國家973項目子課題,致密油多相多尺度流動機理及滲流理論研究--致密油儲層縫網展布下多尺度多相非線性滲流模型的建立
4、 中國石油集團科學技術研究院, 特高含凝析油頁巖氣藏流體相態特征分析和分段壓裂水平井數值模擬方法研究
5、 中石油, 王徐莊油田沙一下生物灰巖油藏重構地下認識體系與增加可采儲量研究
6、 延長油田股份有限公司,薄互層(低電阻)砂巖儲集層識別技術
7、 教育部, 高產及特高產油藏滲流特征與高效開發設計
8、 中石油, 安第斯重油流動能力及動用策略研究
9、 中石化, 砂礫巖油藏采收率標定方法研究
10、 中石油, 趙東油田儲層構型與剩余油分布研究
11、 中石油, 低滲透油藏氮氣驅適應性研究
12、 中石油, 唐家河油田精細油砂體刻畫與增加可采儲量研究
13、 中國石油天然氣股份有限公司勘探開發研究院,蘇丹六區Fula斷塊稠油及FN AG稀油油田開發調整策略研究
14、 延長油田股份有限公司,低滲透裂縫性油藏高效注水與水竄治理技術研究
15、 國家科技重大專項子課題,西非及亞太大陸邊緣盆地油氣勘探開發一體化技術-西非深水典型油氣田高效開發產能評價研究
16、 國家自然科學基金,低滲透油藏非達西滲流機理與應用
重要獎勵與榮譽:
1、指導的博士學位論文《基于自適應代理模型的頁巖氣藏縫網參數優化方法研究》獲得中國石油大學(北京)優秀博士學位論文
2、指導的碩士學位論文《致密油藏體積壓裂水平井滲流模型及產能評價研究》獲得中國石油大學(北京)優秀碩士學位論文
3、低品位油藏二氧化碳利用與埋存協同關鍵技術,中國發明協會,發明創業獎-創新獎一等獎
4、中低滲復雜斷塊油藏非均質動態描述及精細調整技術,中國技術市場協會金橋獎,科學技術獎一等獎
5、特/超低滲透油藏裂縫動態表征與開發調整應用,中國石油和化學工業聯合會科學技術獎,科技進步獎二等獎
6、非均質裂縫性油藏大尺度物理模型研制,中國石油和化工自動化行業科學技術獎 ,技術發明獎一等獎
7、復雜氣藏高效開發理論與應用,教育部,科學技術進步獎二等獎
8、《油藏工程》課程體系建設與實踐,中國石油大學(北京)第六屆優秀教學成果一等獎
9、優秀指導教師,全國石油工程設計大賽
10、《油藏工程》課程研究型教學與探索,中國石油大學(北京)第七屆優秀教學成果一等獎
11、博士生教材《現代油藏滲流力學原理》被北京市教委評為精品教材
12、獲得中國石油大學石油工程學院院長獎“最佳科研獎”
13、被授予中國石油大學(北京)“科技創新優秀指導教師”榮譽稱號
14、被授予中國石油大學(北京)2016-2018年度“優秀教師”榮譽稱號
15、榮獲2018年度“中國百篇最具影響國際學術論文”
16、教育部新世紀優秀人才,并獲得研究資助
社會與學術兼職:
1、SPE會員
2、雜志《大慶石油地質與開發》第五屆編委
3、《International Journal of Heat and Mass Transfer》, 《Journal of Natural Gas Science and Engineering》,《Journal of Petroleum Science and Engineering》,《Transport in Porous Media》,《Special Topics and Reviews in Porous Media》和《Petroleum Science》等審稿人
4、《石油學報》,《中國石油大學學報》和《石油鉆探技術》等審稿人