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Abstract: Applying the standard Galerkin finite element method for solving flow problems in porous
media encounters some difficulties such as numerical oscillation at the shock front and discontinuity
of the velocity field on element faces. Discontinuity of velocity field leads this method not to conserve
mass locally. Moreover, the accuracy and stability of a solution is highly affected by a non-conservative
method. In this paper, a three dimensional control volume finite element method is developed for two-
phase fluid flow simulation which overcomes the deficiency of the standard finite element method, and
attains high-orders of accuracy at a reasonable computational cost. Moreover, this method is capable of
handling heterogeneity in a very rational way. A fully implicit scheme is applied to temporal discretization
of the governing equations to achieve an unconditionally stable solution. The accuracy and efficiency of
the method are verified by simulating some waterflooding experiments. Some representative examples
are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous
porous media.
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1 Introduction

Simulation of mass transport and fluid flow in porous
media is a problem of increasing importance in engineering.
Among the practical applications of mass transport in porous
media, groundwater flow, oil recovery and enhanced oil
recovery processes, contaminant transport in ground water
and vadose zone could be mentioned.

One of the main objectives of simulating multiphase flow
in porous media is to properly capture the complex geometry
and heterogeneity of rocks. Rock properties, such as porosity
and permeability, may change significantly from one region to
another, and subsequently, fluid velocity will vary by several
orders of magnitude over a relatively short distance. Due
to these facts, multiphase flow simulation in porous media
poses a great challenge for most of the available numerical
methods.

Various numerical methods have been applied to solve the
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governing equations describing subsurface flow. The finite
difference (FD) method has been widely used in the solution
of these equations (Todd et al, 1972; Settari and Aziz, 1975;
Abriola and Pinder, 1985; Chen and Ewing, 1997; Chen et al,
2005; Lu and Wheeler, 2009). However, this method produces
excessive numerical dispersion and grid orientation problems
(Ewing, 1983) in addition to difficulties in the treatment of
complicated geometry and boundary conditions. Intrinsic
mesh flexibility of the finite element method (FEM) could
overcome these deficiencies, but the classical FEM is not, in
general, locally mass conservative (Chen et al, 2006b), and
tends to generate numerical solutions with severe nonphysical
oscillations (Wang et al, 2003).

Recently, mass conservative schemes such as the
unstructured finite volume methods (FVM), mixed finite-
element method (MFEM) and combination of finite element
and the finite volume methods (FEFVM) have been
extensively developed and studied in the literature (Durlofsky,
1994; Verma, 1996; Bergamaschi et al, 1998; Edwards and
Rogers, 1998; Edwards, 2002; Korsawe et al, 2003; Rees et
al, 2004; Nayagum et al, 2004; Geiger et al, 2004; Hoteit and
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Firoozabadi, 2005; Carvalho et al, 2007).

Another interesting approach is the control volume finite
element method (CVFEM) which has been developed as
a fully conservative method. Application of CVFEM to
simulate multiphase fluid flow in porous media has been
rapidly increased (Fung et al, 1991; Li et al, 2003; Chen et
al, 2006b; Mello et al, 2009), since this method combines
the mesh flexibility of FEM with the local conservative
characteristic of the finite difference method at the control
volume level.

Another important object in the field of multiphase
flow simulation is to develop a stable, efficient, robust, and
accurate solution for solving the multiphase flow equations
in the time domain. Three types of time discretization
method are commonly used to solve these equations: the
IMPES (implicit pressure and explicit saturation) method;
the sequential method; and the fully implicit method (Chen et
al, 2006a). The IMPES solution method makes the pressure
variables implicit in time, whereas, the saturation variables
are considered explicit in time. This method of solution
has a stability limit that is inversely proportional to the
fluid velocity, and this limitation is often too restrictive in
practice. The sequential solution method attempts to remedy
the problem, firstly, by solving the pressure equations based
on the results of the last time step, secondly, by computing
the new fluids velocity fields based on the new pressure and
finally solving the transport problem based on the updated
velocities. In the absence of capillarity, the stability limitation
of the sequential method is less than the IMPES method;
however, decoupling of equations in this method could
generate mass balance errors that are proportional to the
length of time steps. Finally, the fully implicit method solves
the system of coupled equations simultaneously with an
implicit time scheme. This method is unconditionally stable
and can take large time steps.

The main goal of this paper is to present a fully
conservative method for solving two-phase flow equations
which could handle heterogeneities in a rational way. In order
to avoid any stability limitation, a fully implicit scheme is
applied to temporal discretization of the governing equations.
The accuracy and efficiency of the proposed method
are verified by comparing the model results with some
waterflooding experiments. Furthermore, in order to evaluate
the model capability for handling discontinuous materials
properties, some representative examples are presented.

2 Governing equations

The system of concern in this paper is considered as a
mixture consisting of a rigid porous media, water and oil
which are considering as wetting and non-wetting phases,
respectively. It is assumed that oil and water are two
immiscible and incompressible fluids. The basic equations
for describing this system are derived based on the classical
continuum theory of mixture (Goodman and Gowin, 1972). In
this approach, the constituents of the mixture are considered
as overlapping continua. This means that each point in the
mixture is simultaneously occupied by materials of all phases.

The flow of each phase is described by conservation of

mass

on,
Pa 5,

and generalized Darcy’s law
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where n, represents the volume fraction of phase a [a denotes
water (w) and oil (0)]; p,is the mass density of phase a; w,
is the relative velocity of phase a with respect to the solid
skeleton; M, is the sources or sinks terms; K is the absolute
permeability tensor of the solid skeleton; k,, and g, are the
relative permeability and the dynamic viscosity of phase a,
respectively. The relative permeability for water and oil phases
are calculated by the relations proposed by Lujan (1985)
k _ S;\i+3/1)//1
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saturation of water phase and 4 is a fitting parameter related
to the pore size distribution.

In addition, there is a constraint between fluid volume
fractions

n +n =n @)
where » represents the rock porosity. This relation means that
the fluid phases jointly fill the voids.

Another constraint equation is defined by considering the
fact that when two fluid phases flow in a porous medium,
flow of each phase is affected by the other phase. In order
to specify this interacting motion in the model, one requires
equations which link each phase pressure to its volume
fraction. The most practical method for considering this
interacting motion is to use empirical correlations relating the
capillary pressure (p,) to the volume fraction of the wetting
phase (Hassanizadeh and Gray, 1993). In this paper, the
relation proposed by Brooks and Corey (1966) is employed

2
n,=n, + (”wsm -n, ){&} (5)
pC
where n,_is the value of water volume fraction at zero
suction; n, is the value of water volume fraction at very
high suction; P4 1s the displacement pressure for oil; and 4 is

defined in the relative permeability relations (Eq. 3).
Partially differentiating Eq. (5), one obtains
dn, ,
dn, = -(dp=dp)=rm (dp,~dp,) (©)

c

and from Eq. (4)
dno = _dnw (7)
Substituting Egs. (2), (6) and (7) into Eq. (1), the final
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form of mass balance equations for water and oil phases are
obtained:

o VP () VP
R ®)

+V.{p.K,[p.g-Vp,]}-M, =0

P, P,
ot ot )
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(-n.0,) (n,p,)

where K, (K, = kw‘_K) is the mobility of phase a. It is worth

a

noting that viscosities of water and oil phases are assumed to
be pressure independent.

Egs. (8) and (9) represent a system of two highly
nonlinear partial differential equations. Relative permeability
and phase volume fractions are the major nonlinearity sources
in these equations.

In this paper, phase pressures are selected as the primary
unknowns. Choice of the primary variables is a crucial step in
efficiency of multiphase flow models in porous media (Wua
and Forsyth, 2001). Ataie-Ashtiani and Raeesi-Ardekani
(2010) showed that selection of the phase pressures as the
primary variables tends to minimize computational cost.
However, Wua and Forsyth (2001) did not agree with them.
On the other hand, this work is the first step towards the
development of more general numerical algorithm for the
coupled hydro-mechanical simulation of multi-phase flow in
porous media. Therefore, based on some of the recent hydro-
mechanical models (Lewis et al, 1998; Pao et al, 2001; Li et
al, 2005), in this paper, the phase pressures are chosen as the
primary variables.

The equations in this system are strongly coupled.
Capillary pressure plays a key role in this type of formulation,
because coupling of Egs. (8) and (9) is due to existence of
capillarity. Moreover, fluid saturation is calculated based on
the existence of capillary pressure function. Theoretically,
this system of equations collapses at the absence of an oil
phase, because two pressures are no longer independent, and
at the same time two mass balance equations are still needed
to be solved. While applying this situation in the model, if p,
is defined with a certain value equaling to p, in the capillary
pressure relation (Eq. (5)), water and oil pressures will remain
independent and the problem will be solved automatically.

In order to complete the description of governing
equations, it is necessary to define appropriate initial and
boundary conditions. The initial conditions specify the full
field of water and oil phase pressures at time /=0

p,=py in Qandon T (10)
where Q is the domain of interest and T is its boundary. The
boundary condition can be of two types or a combination of
these: the Dirichlet boundary condition, in which the phase
pressures on the boundaries (T",) are known, and the Neumann

boundary condition, in which the values of phase fluxes at the
boundaries (T",) are imposed (where I" = r, U Fq)
on I,

P, =D, (11)

{p.K,[p.g-Vp,)}) 'n=q, onT, (12)

where n denotes the outward unit normal vector on the
boundary and ¢ is the imposed mass flux normal to the
boundary.

3 Numerical solution

In the present work, a CVFEM is adopted for numerical
solution of Egs. (8) and (9) in spatial domain. As common in
FEM, the discrete form of differential equations is presented
in a transformed space with local coordinate system (&, 77, &)
defined for each element (Fig. 1). In the proposed method,
the physical domain discretization is done using hexahedral
elements. And further subdivision of elements into control
volumes is performed in the transformed space, as shown in
Fig. 2. The coordinate transformation at the element level is
performed by
13)

(& )=N(E&n.Ox, =123

where x; is the value of the ith coordinate in the physical

space; N is the vector of standard finite element shape
functions and X, is the nodal value vector of the ith

(a)

X

(b)

Fig. 1 Element representation
(a) in physical domain and (b) in the transformed space

coordinate.

The control volume finite element discretization of Egs. (8)
and (9) is expressed in terms of the nodal phase pressures, i.e.
P.., which are selected as the primary variables. The values
of phase pressures (p,) at any point within an element are
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Fig. 2 (a) System of finite element mesh in the transformed space, (b)
control volume representation around a node and (c) illustrating a sub-control
volume belongs to the eliminated element

approximated by the following expressions

r.(&.1n,8)=N(&,n,$)p, (14a)

(&1, &) =N, n,)p, (14b)

In the classical FEM, the first order polynomials are
commonly used as the shape functions. This lead the
pressure field to be continued in the whole physical space;
but the velocity field will be discontinuous between adjacent
elements. However, because the control volume faces are
located inside the elements, the velocity fields are continues
between adjacent control volumes (Fig. 3). It means that
the mass out-flux through a surface of an element is not
necessarily equal to the mass in-flux through the same surface

of the adjacent element; and subsequently mass does not
conserve at the element level (Fig. 4(a)). However, owing to
continuity of the velocity field at the control volume faces, if
the mass flux is integrated on each control volume surface,
conservation of mass will be obtained on the control volumes
(Durlofsky, 1994) (Fig. 4(b)).

Now, by integrating Eqs. (8) and (9) over a control
volume and applying Gauss theorem, the weak form of
balance equations are derived

6p op
v 40 o)
chv( MaPu) g 40 or (15)
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Fig. 3 Discontinuity of the velocity field across the element faces and
continuity of the velocity field across the control volume faces for the
one-dimensional finite element mesh
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Fig. 4 Mass in-flux and out-flux through the elements and control volumes
faces (a) mass out-flux from element 1 is not necessarily equal to mass
in-flux into element 2 and (b) mass out-flux from control volnme 1 is always
equal to mass in-flux into control 2 volume
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where Q. indicates the domain of a control volume bounded
by Tcy.

Substituting the interpolatory representation of phase
pressures (Eq. (14)) into Egs. (15) and (16), one obtains

, p, : ap,
|:J‘ch\,, (—nwpw ) N dQ:|7 + |:J‘QC_V (nwpw )N dQ:lE
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For the boundary nodes, at least one face of the associated
control volume lies on the physical boundary. The boundary
conditions must be implemented to the model at these nodes.
Dirichlet boundary conditions (Eq. (11)) are enforced by
direct substitution of prescribed nodal values, as in the
classical FEM. For Newman boundary conditions (Eq. (12)),
the prescribed fluxes through the physical boundaries are
added to the right hand side of the equations. Consequently,
Egs. (17) and (18) will have the form

~

. p,
[J‘Qc_v (—nwpw ) N dQ:|? +
- p, K VNI - ndl |p,
l—‘CYV.ir
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Egs. (19) and (20) present the discretized form of the
balance equations at the control volume level. On the other
hand, representation of the equations at the element level
could help the model to handle probable discontinuous

material properties in the physical domain (see Section 4).
To aim this goal, each control volume around a node is
divided to some sub-control volumes belonging to different
elements associated with the node (Fig. 2). Similarly, each
face of a control volume is divided to some sub-control
volume faces. Hence, integrations over a control volume or
a control volume face could be calculated by summing up
the individual integrations over the sub-control volumes and
the sub-control volume faces. By applying this methodology,
discretized formulation could be represented at the element
level and the complete balance equations could be obtained
by assembling the element-wise equations, as in the classical
FEM. The element-wise representation of Egs. (19) and (20)

1S
P, 01 b, P Culd p|_| £ Q1)
0 I_)oo i,o Cow })00 dt ﬁo f;)

where the coefficients are described as

P W (oK YN ) ar (22a)
Po=f (oK VN nf ar (22b)
P, = Lls W' (-n,p,)NdQ .
P, :_[Q W' (-n,p,)NdQ o
C,, ZL,CWT (n,p, )N dQ e
C, =], W (n,p,)NdQ 20
pr— N T _ T

fo=[ mwri-| gwrdr

c q (229)
_‘Ls,c,v,—rq |:p3« (ng)T 'n:|WT dr
.fo =-[Q MOWT dQ—J.r (70WT dl_,
| q (22h)

_L . [Pf (K,g)' -n}WT dr

where Q. and T'g., indicate the domain of an element and
the area of a sub-control volume faces, respectively, and W
is the vector of weighting functions. The weighting functions
in this model are chosen such that the ith weighting function
of an element takes a constant value of unity over the sub-
control volume belonging to node i and zero elsewhere in the
element, i.e.

in the sub-control volume belongs to node i

1
o {0 otherwise (23)
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The time discretization of Eq. (21) is performed by the
fully implicit first order accurate finite difference scheme

Cow I_’oo +Athw 1+1 Aﬁo 1+1

P, 0 p
‘/; 1+1 0 POO 1+1 p‘) t

where At is the time step length and Ap,.,, = P,,; — P,.

24

4 Heterogeneous porous media

In heterogeneous porous media, it is assumed that the
change of rock properties is only acceptable on the element
edges. However, smooth variation of properties is acceptable
inside the elements, because it could be considered with the
finite elements interpolated functions.

In general, the element-wise discretization of the
equations and the above-mentioned assumption are sufficient
to simulate the fluid flow in heterogeneous porous media. To
achieve the mass balance equations for each control volume
in the element-wise format, coefficients of Eq. (24) are
integrated separately in each sub-control volume and sub-
control volume faces (Fig. 5) where the rock properties are
constant or changed smoothly. Then, the complete balance
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Fig. 5 2D control volume split by four different rock types

equations are obtained by assembling the coefficients, as
usual in the classical FEM. Consequently, heterogeneity
of medium could be considered easily and without any
modification of the proposed formulation.

5 Model verification and examples

The accuracy and efficiency of the method are verified
in this section through simulation of some waterflooding
experiments which are reported by Hadia et al (2007; 2008).
Furthermore, some representative examples are shown to
illustrate the potential of the proposed method to simulate
two-phase fluid flow in heterogeneous porous media.

5.1 One dimensional waterflooding

One-dimensional waterflooding experiments, reported
by Hadia et al (2007), are selected as the first example to
test the validity of the model. The selected experiments were
performed at room temperature of 24 °C and atmospheric
pressure. The tests were done on rectangular Berea
sandstone core samples (2.5%2.4x54 ¢cm’) saturated with
heavy liquid paraffin oil. To simulate the recovery process
with waterflooding, brine (water with 1% KCI by volume)
was injected into the sample at a rate of 100 and 50 mL/
h. The measured viscosity of the heavy paraffin oil and
brine were 130 and 0.97 cP, respectively. The measured
porosity and absolute permeability of the core sample used
in the experiments were 38.5% and 1584 mD, respectively.
The average value of irreducible water saturation for
the experiments was about 32.5%. The schematic of 1D
waterflooding experiment is shown in Fig. 6.

Outlet Inlet

54 cm

2.4cm

"25em

Fig. 6 Schematic of Berea sandstone core sample for 1D waterflooding
experiments (Hadia et al, 2007)

The first test case (100 mL/h) is selected for calibrating
of the numerical model parameters; and the latter test case
is adopted to validate the model accuracy. The relative
permeability and capillary curves, which are obtained from
the calibration process, are shown in Figs. 7 and 8. These
curves are also used for the test case with an injection rate of
50 mL/h to evaluate the model accuracy.

Fig. 9 shows the comparative curves of numerical and
experimental results for recovery performance of original
oil in place (OOIP). It is observed that numerical results
are in agreement with experimental data. Fig. 10 shows the
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distribution of water saturation inside the Berea sandstone
core sample during the waterflooding test with the injection
rate of 100 mL/h.
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Water volume fraction

Fig. 8 Capillary pressure versus water volume fraction
for 1D waterflooding problem

5.2 Three dimensional waterflooding

Hadia et al (2008) performed some three-dimensional
waterflooding experiments on a sandstone outcrop of size
30x30%10 cm’, with horizontal and vertical wells of 0.8
cm diameter drilled in the outcrop at different locations.
The waterflooding tests were performed with different well
configurations (vertical production-vertical injection (VP-
VI) wells and horizontal production-vertical injection (HP-
VI) wells) at an injection rate of 60 mL/h. The selected
experiments were done at room temperature of 25+1 °C and
atmosphere pressure. Water and paraffin oil were used as
displacing and displaced fluids, respectively. The measured
viscosity of oil and water were 130 and 0.97 cP. The measured
porosity and absolute permeability of the outcrop, used in

7
After 1.0 PV of injection/:_;];"-? After 2.0 PV of injection‘_/__’\’

y /4

T T T T T 7]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 10 Distribution of water saturation in the core sample
during the test (at an injection rate of 100 mL/h)

the experiments, were 20.8% and 1,500 mD, respectively.
The average value of irreducible water saturation for the
experiments was about 22.1%. The schematic of experiments
is shown in Fig. 11.
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Fig. 11 Schematic of outcrop sandstone core samples (a) VP-VI wells and (b) HP-VI wells (Hadia et al, 2008)

The test with HP-VI wells is selected as the based test for
calibrating the model parameters, and the test with VP-VI is
used to check the model accuracy. Figs. 12 and 13 represent
the relative permeability and capillary curves which are
obtained from the calibration process.

The recovery performance of original oil in place (OOIP)
and the percent of water in the produced fluid (water cut),
resulted from the tests and numerical analyses, are compared
in Figs. 14 and 15. The distribution of water saturation inside
the sand stone outcrop sample during the test with HP-VI
wells is presented in Fig. 16.

5.3 Solution of the elliptic pressure equation in
heterogeneous domains

In order to show that the present model is capable of
handling discontinuous material properties even with very
coarse meshes, the simplest elliptic pressure equation
(A(KAp=0), where K=kI and k is a scalar discontinuous
coefficient) is solved in this section. This example was also
adopted by Rees (2004) and Carvalho et al (2007) to show
the ability of their model in the simulation of discontinuous
materials. However, the model proposed by Rees (2004)
produced poor results for coarse meshes, and the method
proposed by Carvalho et al (2007) seems complicated for
implementation.

In this example, a 1x1x1 cubic domain is considered,
and two cases of material discontinuities are studied by the
proposed numerical model. In the first case, the cube is split
horizontally in two parts (part A and part B) as shown in Fig.
17(a), and in the second case, the cube is divided vertically
into two parts (Fig. 17(b)). The non-dimensional diffusive
parameters (i.e. permeability) are k,=10 and k;=50 for part A
and B, respectively. The pressure at the top and bottom of the
domain are set to p;=0 and py=10, respectively. Impermeable
boundary conditions are set to the lateral edges of the domain.
Fig. 18 shows the extremely coarse mesh adopted for both
cases of this example and the pressure contours in the cubes.
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Fig. 12 Relative permeability versus effective water saturation
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for 3D waterflooding problem
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Analytical solution of the case with horizontal
discontinuity leads to p=0.167 at the central node of the
domain and w,=16.667 (fluid velocity) for both parts A and
B. For the case with vertical discontinuity, exact solution for
the nodal pressure at the central node of the domain is p=0.5,
while the exact fluid velocities for parts A and B are w,=10
and 50, respectively. These results are exactly produced by
the proposed numerical method for both cases, even with the
extremely coarse meshes shown in Fig. 18.

5.4 Confined flow between two perpendicular
barriers

In this example, a 100x100x1 m’ domain with two
perpendicular barriers, consisting of extremely low
permeability zones, is considered (Fig. 19). The geometry of
this example is chosen to be similar to that of Carvalho et al
(2007). The domain is saturated with 28% water and 72% oil,
at its initial condition. Initial zero pressure is assumed inside
the domain. In order to sweep the oil from the domain, water

is injected at the right-hand side of the domain with a rate of
8 m’/day, while the mixture of oil and water is produced at
the left-hand side. The absolute permeability is considered 1.5
D inside the barriers and 15,000 D in the rest of the domain.
In such a way, permeability inside the barriers changes four
orders of magnitude compared with the rest of the reservoir.
In fact, these barriers produce a channel, and fluids must
preferentially flow inside the channel. The porosity, fluids
properties, irreducible water saturation, capillary curve and
relative permeability curves are assumed same as example 2
for both of the zones.

Fig. 20 shows the pressure and velocity fields in the
domain at =10 and /=50 days. Fig. 21 shows the water
saturation contours at /=10 and =50 days.

5.5 Five-spot waterflooding problem with a central
high permeability zone

In this example, a quarter of five-spot waterflooding
problem with a central high permeability zone, is simulated
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Fig. 16 Distribution of water saturation in the core sample during the test (for HP-VI wells)

Fig. 17 Cubic domain of example 3
(a) horizontal material discontinuity and (b) vertical material discontinuity

(Fig. 22). The domain is saturated with 28% water and 72%
oil at its initial condition. Initial zero pressure is assumed
inside the domain. Water is injected to the domain at a rate
of 1,600 liters per day and the model is run for 500 days. The
absolute permeability is considered 1,500 D inside the zone
with high permeability and 1.5 D in the rest of the domain.
Other properties of the fluids and rocks are considered same
as example 2.

Fig. 23 shows the water saturation contours after 200 days

HE SEs

0 0.10203040506070809 1.0

Fig. 18 Pressure distribution inside the cubic domain with extremely
coarse mesh (a) for horizontal material discontinuity and (b) for vertical
material discontinuity

of injection. At this time, the water front does not reach the
high permeability zone, and subsequently, it is not affected
by the zone. Therefore, it is expected that before 200 days of
water injection, the water front should be similar to that in a
homogeneous media. As mentioned by Geiger et al (2004) a
good numerical scheme should produce quarter circle shaped
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Fig. 20 Pressure and velocity fields of example 4
(a) =10 days and (b) /=50 days

saturation fronts of the water phase for a five-spot problem in
a homogeneous medium. This quarter circle shaped of water
front is also produced with the proposed method (Fig. 23).

Fig. 24 shows the water saturation contours after 500 days
of injection. At this time, the water front passed the boundary
of the zone of high permeability materials, and consequently,
the water flow is concentrated at this zone.

6 Conclusions

A control volume finite element method is proposed for
the solution of governing differential equations of immiscible
two-phase flow in porous media. In this method, the mesh
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Fig. 21 Water saturation contours of example 4
(a) =10 days and (b) =50 days
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Fig. 22 Geometric configuration of example 5

flexibility of finite element method is combined with the
local conservative characteristic of finite difference method
at the control volume level. The formulation is presented
at the element level. The element-wise discretization of the
governing equations leads the proposed method to handle
the heterogeneity and discontinuity of rock properties in an
elegant and accurate manner. The numerical diffusion and
dispersion errors at shock fronts are minimal in the proposed
method. Subsequently, the proposed solution could accurately
preserve the shock fronts. The accuracy and ability of the
proposed model was verified with some waterflooding
experiments and some representative model examples.
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