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Abstract: 
media encounters some difficulties such as numerical oscillation at the shock front and discontinuity 

mass locally. Moreover, the accuracy and stability of a solution is highly affected by a non-conservative 

attains high-orders of accuracy at a reasonable computational cost. Moreover, this method is capable of 

porous media.
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1 Introduction

media is a problem of increasing importance in engineering. 
Among the practical applications of mass transport in porous 
media, groundwater flow, oil recovery and enhanced oil 
recovery processes, contaminant transport in ground water 

in porous media is to properly capture the complex geometry 
and heterogeneity of rocks. Rock properties, such as porosity 

orders of magnitude over a relatively short distance. Due 
to these facts, multiphase flow simulation in porous media 
poses a great challenge for most of the available numerical 
methods.

Various numerical methods have been applied to solve the 

governing equations describing subsurface flow. The finite 
difference (FD) method has been widely used in the solution 

Abriola and Pinder, 1985; Chen and Ewing, 1997; Chen et al, 
2005; Lu and Wheeler, 2009). However, this method produces 
excessive numerical dispersion and grid orientation problems 
(Ewing, 1983) in addition to difficulties in the treatment of 

mesh flexibility of the finite element method (FEM) could 

general, locally mass conservative (Chen et al, 2006b), and 
tends to generate numerical solutions with severe nonphysical 
oscillations (Wang et al, 2003).

Recently, mass conservative schemes such as the 
unstructured finite volume methods (FVM), mixed finite-

and the finite volume methods (FEFVM) have been 
extensively developed and studied in the literature (Durlofsky, 
1994; Verma, 1996; Bergamaschi et al, 1998; Edwards and 
Rogers, 1998; Edwards, 2002; Korsawe et al, 2003; Rees et 
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element method (CVFEM) which has been developed as 
a fully conservative method. Application of CVFEM to 
simulate multiphase fluid flow in porous media has been 
rapidly increased (Fung et al, 1991; Li et al, 2003; Chen et 
al, 2006b; Mello et al, 2009), since this method combines 
the mesh flexibility of FEM with the local conservative 
characteristic of the finite difference method at the control 
volume level.

Another important object in the field of multiphase 

accurate solution for solving the multiphase flow equations 

method are commonly used to solve these equations: the 

the sequential method; and the fully implicit method (Chen et 

variables implicit in time, whereas, the saturation variables 
are considered explicit in time. This method of solution 
has a stability limit that is inversely proportional to the 
fluid velocity, and this limitation is often too restrictive in 
practice. The sequential solution method attempts to remedy 

on the results of the last time step, secondly, by computing 

finally solving the transport problem based on the updated 

however, decoupling of equations in this method could 
generate mass balance errors that are proportional to the 
length of time steps. Finally, the fully implicit method solves 
the system of coupled equations simultaneously with an 
implicit time scheme. This method is unconditionally stable 
and can take large time steps.

The main goal of this paper is to present a fully 
conservative method for solving two-phase flow equations 

to avoid any stability limitation, a fully implicit scheme is 

The accuracy and efficiency of the proposed method 
are verified by comparing the model results with some 

the model capability for handling discontinuous materials 
properties, some representative examples are presented.

2 Governing equations

The system of concern in this paper is considered as a 
mixture consisting of a rigid porous media, water and oil 
which are considering as wetting and non-wetting phases, 

immiscible and incompressible fluids. The basic equations 
for describing this system are derived based on the classical 

this approach, the constituents of the mixture are considered 
as overlapping continua. This means that each point in the 
mixture is simultaneously occupied by materials of all phases.

The flow of each phase is described by conservation of 

mass
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where n  represents the volume fraction of phase [ denotes 
water (w) and oil (o)];  is the mass density of phase ; w
is the relative velocity of phase with respect to the solid 
skeleton; M  is the sources or sinks terms; K is the absolute 
permeability tensor of the solid skeleton; kr  and  are the 
relative permeability and the dynamic viscosity of phase , 
respectively. The relative permeability for water and oil phases  
are calculated by the relations proposed by Lujan (1985)
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saturation of water phase and 

fractions

(4)w o� � �

where n represents the rock porosity. This relation means that 

fact that when two fluid phases flow in a porous medium, 

to specify this interacting motion in the model, one requires 
equations which link each phase pressure to its volume 
fraction. The most practical method for considering this 
interacting motion is to use empirical correlations relating the 
capillary pressure (pc) to the volume fraction of the wetting 

relation proposed by Brooks and Corey (1966) is employed

(5)
res sat res

d
w w w w

c
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where 
satw�

suction; 
resw�  is the value of water volume fraction at very 

high suction; pd is the displacement pressure for oil; and is 

Partially differentiating Eq. (5), one obtains
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w o w w o w

c

d
d d d d d

d
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and from Eq. (4)

o wd d� �  (7)
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form of mass balance equations for water and oil phases are 
obtained:

(8)
w o
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where r( )
k KK K  is the mobility of phase 

noting that viscosities of water and oil phases are assumed to 
be pressure independent.

Eqs. (8) and (9) represent a system of two highly 
nonlinear partial differential equations.  Relative permeability 
and phase volume fractions are the major nonlinearity sources 
in these equations.

unknowns. Choice of the primary variables is a crucial step in 

and Forsyth, 2001). Ataie-Ashtiani and Raeesi-Ardekani 
(2010) showed that selection of the phase pressures as the 

However, Wua and Forsyth (2001) did not agree with them. 
On the other hand, this work is the first step towards the 
development of more general numerical algorithm for the 

porous media. Therefore, based on some of the recent hydro-
mechanical models (Lewis et al, 1998; Pao et al, 2001; Li et 
al, 2005), in this paper, the phase pressures are chosen as the 
primary variables.

The equations in this system are strongly coupled. 
Capillary pressure plays a key role in this type of formulation, 
because coupling of Eqs. (8) and (9) is due to existence of 

the existence of capillary pressure function. Theoretically, 
this system of equations collapses at the absence of an oil 
phase, because two pressures are no longer independent, and 
at the same time two mass balance equations are still needed 
to be solved. While applying this situation in the model, if pc 

pd in the capillary 
pressure relation (Eq. (5)), water and oil pressures will remain 
independent and the problem will be solved automatically.

equations, it is necessary to define appropriate initial and 
boundary conditions. The initial conditions specify the full 

t=0

(10)0     in  and on  � �

 is its boundary. The 
boundary condition can be of two types or a combination of 
these: the Dirichlet boundary condition, in which the phase 
pressures on the boundaries ( p

boundaries ( q) are imposed (where � 
 ) 

    on � � p (11)

(12)T
      on  qpK g n q

where n denotes the outward unit normal vector on the 
boundary and q  is the imposed mass flux normal to the 
boundary.

3 Numerical solution

solution of Eqs. (8) and (9) in spatial domain. As common in 
FEM, the discrete form of differential equations is presented 
in a transformed space with local coordinate system ( , , )

elements. And further subdivision of elements into control 
volumes is performed in the transformed space, as shown in 
Fig. 2. The coordinate transformation at the element level is 
performed by

(13)ˆ( , , ) ( , , )    1, 2, 3� �� �N x  

where xi is the value of the ith coordinate in the physical 
space; N is the vector of standard finite element shape 
functions and ˆ �x  is the nodal value vector of the ith 

x
y

z(a)

(b)

Fig. 1 Element representation 
(a) in physical domain and (b) in the transformed space

coordinate.

and (9) is expressed in terms of the nodal phase pressures, i.e. 
p̂ , which are selected as the primary variables. The values 
of phase pressures (p ) at any point within an element are 
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approximated by the following expressions

w wˆ( , , ) ( , , )� N p (14a)

(14b)o oˆ( , , ) ( , , )� N p

commonly used as the shape functions. This lead the 
pressure field to be continued in the whole physical space; 

elements. However, because the control volume faces are 
 

the mass out-flux through a surface of an element is not 

of the adjacent element; and subsequently mass does not 
conserve at the element level (Fig. 4(a)). However, owing to 

the mass flux is integrated on each control volume surface, 
conservation of mass will be obtained on the control volumes 
(Durlofsky, 1994) (Fig. 4(b)).

volume and applying Gauss theorem, the weak form of 
balance equations are derived

(15)C.V. C.V.

C.V. C.V.
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w w w w
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Control volume

(c)

Sub-control volume

Fig. 2
control volume representation around a node and (c) illustrating a sub-control 
volume belongs to the eliminated element

e=1

Control volumes

Pressure

Velocity

Control volumes

e=2 e=3 e=4

Fig. 3 

Element out-flux

Element 1

Element 2

Control volume out-flux

Control volume 1

Control volume in-flux

Control volume 2

Element in-flux

(a)

(b)

Fig. 4
faces (a) mass out-flux from element 1 is not necessarily equal to mass  
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(16)C.V. C.V.

C.V. C.V.
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C.V. indicates the domain of a control volume bounded
by  C.V..

pressures (Eq. (14)) into Eqs. (15) and (16), one obtains
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For the boundary nodes, at least one face of the associated 
control volume lies on the physical boundary. The boundary 
conditions must be implemented to the model at these nodes. 
Dirichlet boundary conditions (Eq. (11)) are enforced by 
direct substitution of prescribed nodal values, as in the 

the prescribed fluxes through the physical boundaries are 
added to the right hand side of the equations. Consequently,  
Eqs. (17) and (18) will have the form
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balance equations at the control volume level. On the other 
hand, representation of the equations at the element level 
could help the model to handle probable discontinuous 

To aim this goal, each control volume around a node is 
divided to some sub-control volumes belonging to different 

face of a control volume is divided to some sub-control 
volume faces. Hence, integrations over a control volume or 
a control volume face could be calculated by summing up 
the individual integrations over the sub-control volumes and 
the sub-control volume faces. By applying this methodology, 

level and the complete balance equations could be obtained 
by assembling the element-wise equations, as in the classical 
FEM. The element-wise representation of Eqs. (19) and (20) 
is
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e and   indicate the domain of an element and 
the area of a sub-control volume faces, respectively, and W 
is the vector of weighting functions. The weighting functions 
in this model are chosen such that the ith weighting function 
of an element takes a constant value of unity over the sub-
control volume belonging to node i
element, i.e.

(23)

1 in the sub-control volume belongs to node 
0 otherwise�

�
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equations are obtained by assembling the coefficients, as 
usual in the classical FEM. Consequently, heterogeneity 
of medium could be considered easily and without any 

The accuracy and efficiency of the method are verified 
in this section through simulation of some waterflooding 
experiments which are reported by Hadia et al (2007; 2008). 
Furthermore, some representative examples are shown to 
illustrate the potential of the proposed method to simulate 

One-dimensional waterflooding experiments, reported 
by Hadia et al (2007), are selected as the first example to 
test the validity of the model. The selected experiments were 
performed at room temperature of 24 °C and atmospheric 
pressure. The tests were done on rectangular Berea 
sandstone core samples (2.5×2.4×54 cm3) saturated with 
heavy liquid paraffin oil. To simulate the recovery process 
with waterflooding, brine (water with 1% KCl by volume) 

h. The measured viscosity of the heavy paraffin oil and 
brine were 130 and 0.97 cP, respectively. The measured 
porosity and absolute permeability of the core sample used 
in the experiments were 38.5% and 1584 mD, respectively. 
The average value of irreducible water saturation for 
the experiments was about 32.5%. The schematic of 1D 

Fig. 5 2D control volume split by four different rock types
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experiments (Hadia et al, 2007)

of the numerical model parameters; and the latter test case 
is adopted to validate the model accuracy. The relative 
permeability and capillary curves, which are obtained from 
the calibration process, are shown in Figs. 7 and 8. These 
curves are also used for the test case with an injection rate of 

Fig. 9 shows the comparative curves of numerical and 
experimental results for recovery performance of original 

are in agreement with experimental data. Fig. 10 shows the 
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where �  is the time step length and 1 1ˆ ˆ ˆ� � �p p p .

4 Heterogeneous porous media

change of rock properties is only acceptable on the element 
edges. However, smooth variation of properties is acceptable 
inside the elements, because it could be considered with the 

achieve the mass balance equations for each control volume 
in the element-wise format, coefficients of Eq. (24) are 
integrated separately in each sub-control volume and sub-
control volume faces (Fig. 5) where the rock properties are 
constant or changed smoothly. Then, the complete balance 



491

distribution of water saturation inside the Berea sandstone 

the experiments, were 20.8% and 1,500 mD, respectively. 
The average value of irreducible water saturation for the 
experiments was about 22.1%. The schematic of experiments 
is shown in Fig. 11.
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Fig. 7 Relative permeability versus effective water saturation

Hadia et al (2008) performed some three-dimensional 

30×30×10 cm3

cm diameter drilled in the outcrop at different locations. 
The waterflooding tests were performed with different well 
configurations (vertical production-vertical injection (VP-

experiments were done at room temperature of 25±1 °C and 
atmosphere pressure. Water and paraffin oil were used as 
displacing and displaced fluids, respectively. The measured 
viscosity of oil and water were 130 and 0.97 cP. The measured 
porosity and absolute permeability of the outcrop, used in 
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Fig. 8 Capillary pressure versus water volume fraction 
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Fig. 10 Distribution of water saturation in the core sample 
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used to check the model accuracy. Figs. 12 and 13 represent 
the relative permeability and capillary curves which are 
obtained from the calibration process.

and the percent of water in the produced fluid (water cut), 
resulted from the tests and numerical analyses, are compared 
in Figs. 14 and 15. The distribution of water saturation inside 

wells is presented in Fig. 16.

5.3 Solution of the elliptic pressure equation in 
heterogeneous domains

handling discontinuous material properties even with very 
coarse meshes, the simplest elliptic pressure equation 

K p=0), where K=kI and k is a scalar discontinuous 

adopted by Rees (2004) and Carvalho et al (2007) to show 
the ability of their model in the simulation of discontinuous 
materials. However, the model proposed by Rees (2004) 
produced poor results for coarse meshes, and the method 
proposed by Carvalho et al (2007) seems complicated for 
implementation.

and two cases of material discontinuities are studied by the 

17(a), and in the second case, the cube is divided vertically 
into two parts (Fig. 17(b)). The non-dimensional diffusive 
parameters (i.e. permeability) are kA=10 and kB=50 for part A 
and B, respectively. The pressure at the top and bottom of the 
domain are set to pT=0 and pB

boundary conditions are set to the lateral edges of the domain. 
Fig. 18 shows the extremely coarse mesh adopted for both 
cases of this example and the pressure contours in the cubes. 
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Fig. 15 Comparison of measured and predicted results for water cut curves
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discontinuity leads to p=0.167 at the central node of the 
domain and w =16.667 (fluid velocity) for both parts A and 
B. For the case with vertical discontinuity, exact solution for 
the nodal pressure at the central node of the domain is p=0.5, 

wz=10 
and 50, respectively. These results are exactly produced by 
the proposed numerical method for both cases, even with the 
extremely coarse meshes shown in Fig. 18.

5.4 Confined flow between two perpendicular 
barriers

3 domain with two 
perpendicular barriers, consisting of extremely low 

this example is chosen to be similar to that of Carvalho et al 
(2007). The domain is saturated with 28% water and 72% oil, 
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Fig. 14

is injected at the right-hand side of the domain with a rate of 
8 m3

the left-hand side. The absolute permeability is considered 1.5 
D inside the barriers and 15,000 D in the rest of the domain. 

orders of magnitude compared with the rest of the reservoir. 

preferentially flow inside the channel. The porosity, fluids 
properties, irreducible water saturation, capillary curve and 
relative permeability curves are assumed same as example 2 

Fig. 20 shows the pressure and velocity fields in the 
domain at t=10 and t=50 days. Fig. 21 shows the water 
saturation contours at t=10 and t=50 days.

5.5 Five-spot waterflooding problem with a central 
high permeability zone



494

Fig. 16

Beginning of the test After 0.3 PV of injection
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Fig. 17 Cubic domain of example 3
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(Fig. 22). The domain is saturated with 28% water and 72% 

inside the domain. Water is injected to the domain at a rate 
of 1,600 liters per day and the model is run for 500 days. The 

with high permeability and 1.5 D in the rest of the domain. 

as example 2.
Fig. 23 shows the water saturation contours after 200 days 

of injection. At this time, the water front does not reach the 

water injection, the water front should be similar to that in a 
homogeneous media. As mentioned by Geiger et al (2004) a 
good numerical scheme should produce quarter circle shaped 
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a homogeneous medium. This quarter circle shaped of water 
front is also produced with the proposed method (Fig. 23).

Fig. 24 shows the water saturation contours after 500 days 
of injection. At this time, the water front passed the boundary 

6 Conclusions
A control volume finite element method is proposed for 

the solution of governing differential equations of immiscible 

Fig. 21 Water saturation contours of example 4
(a) t=10 days and (b) t=50 days

(a) (b)
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flexibility of finite element method is combined with the 
local conservative characteristic of finite difference method 
at the control volume level. The formulation is presented 

governing equations leads the proposed method to handle 
the heterogeneity and discontinuity of rock properties in an 
elegant and accurate manner. The numerical diffusion and 
dispersion errors at shock fronts are minimal in the proposed 

preserve the shock fronts. The accuracy and ability of the 
proposed model was verified with some waterflooding 
experiments and some representative model examples.
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Fig. 23 Water saturation contours of example 5 at 200 days
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Fig. 24 Water saturation contours of example 5 at 500 days
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