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Abstract: The first generation coherence algorithm (the C1 algorithm) that calculates the coherence of
seismic data in-line and cross-line was developed using statistical cross-correlation theory, and it has the
limitation that the technique can only be applied to horizons. Based on the texture technique, the texture
coherence algorithm uses seismic information in different directions and differences among multiple
traces. It can not only calculate seismic coherence in in-line and cross-line directions but also in all other
directions. In this study, we suggested first an optimization method and a criterion for constructing the
gray level co-occurrence matrix of the seismic texture coherence algorithm. Then the co-occurrence
matrix was prepared to evaluate differences among multiple traces. Compared with the C1 algorithm,
the seismic texture coherence algorithm suggested in this paper is better than the C1 in its information
extraction and application. Furthermore, it implements the multi-direction information fusion and it, also
has the advantage of simplicity and effectiveness, and improves the resolution of the seismic profile.
Application of the method to field data shows that the texture coherence attribute is superior to that of C1

and that it has merits in identification of faults and channels.
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1 Introduction

In the interpretation of seismic data, three-dimensional
(3-D) seismic attribute is widely applied to the interpretation
of geology, faults and structure, identification of porosity,
lithology and pore fluids and reservoir characterization (Li et
al, 2011a; 2011b; Liu et al, 2011; Meng et al, 2010; Smith,
2010; Tian et al, 2013; Ulvmoen and Omre, 2010; Ulvmoen
et al, 2010). From the 1970s to 1980s, three instantaneous
seismic attribute based on the Hilbert transform was broadly
used in hydrocarbon reservoir exploration. Since the 1990s,
the seismic attribute has been utilized for petroleum-gas
prediction, reservoir description and four-dimensional seismic
monitoring. Therefore, seismic attribute data were used to
dynamically monitor reservoir and identify oil and gas (Lewis,
1997). An intelligent algorithm was utilized to choose logging
curve parameters which are sensitive to porosity, and these
parameters were used as prior information to predict reservoir
porosity (Dorrington and Link, 2004). Three-dimensional
seismic attribute data were used to predict porosity
successfully (Leiphart and Hart, 2001). Core data, logging
data and petrophysical data were applied to obtaining the
seismic attribute which can be used to identify porosity and
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faults of reservoir (Fu et al, 2006). Geometric characteristics
of the seismic data were utilized to extract coherence
properties and curvature attributes which are used to identify
complex structures (Sullivan et al, 2006). Three-dimensional
seismic attribute technology was used to identify fine
geological structure of mineral resources (Manzi et al, 2012).
In conclusion, the three-dimensional seismic attribute has
been playing an important role in the interpretation of seismic
data. At present, there are various kinds of developed seismic
attributes. And we know that the most commonly used ones
include root-mean-square amplitude, frequency, coherence,
AVO and wave impedance (Bing et al, 2012; Liu et al, 2012).
Some of these attributes are sensitive to lithology, some
are sensitive to fluid, some are sensitive to faults and some
are sensitive to channel sand bodies. Through continuous
practicing and understanding, researchers generally believe
that seismic coherence is one of the most effective and
commonly used three-dimensional seismic attributes (Chopra
and Marfurt, 2010; Chopra et al, 2011; Marfurt, 2006; Mai
et al, 2009). The seismic coherence technique is utilized to
interpret seismic data and identify faults and channel sand
bodies and it works well.

The seismic coherence technique was first proposed
by Bahorich and Farmer in 1995 (Bahorich and Farmer,
1995) and in 1996 they applied for a patent entitled “signal
processing and prospecting method”, namely the first
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generation coherence, or C1 for short (Bahorich and Farmer,
1996). In the C1 algorithm, along in-line traces or cross-line
traces, every time we take two traces data and then calculate
the coherence of these data. Therefore the C1 algorithm is
the geometric mean of the coherent attributes of second order
statistics of two adjacent in-line traces and two adjacent
cross-line traces, but its noise immunity is weak. The second
generation coherence technology, or C2 for short, was first
proposed in 1998 (Marfurt et al, 1998) and in 1999 the
third generation coherence algorithm, or C3 for short, was
proposed (Marfurt et al, 1999). In this paper, we only consider
improving the C1 algorithm.

Texture is an important characteristic which is used to
identify and describe objects in nature. In 1984, texture
attribute was introduced into geophysical exploration by Love
and Simaan (1984) to process seismic data. However, workers
in seismic geology paid little attention to the seismic texture
attribute method until West et al (2002) applied texture
analysis technology to analyzing 3-D seismic data volume
and particularly used artificial neural network technology with
texture image analysis technology to process 3-D seismic
data volume and quantitatively classify seismic facies.
After that, the researchers gradually paid more attention
to it. Texture is an important feature utilized to identify
objects, and is as important as color and shape. Texture
can also be used to identify channel sand bodies and faults.
Haralick et al (1973) proposed texture technology in 1973
and used it to recognize and classify images in digital image
processing. Texture processing technology based on gray
level co-occurrence matrix theory was applied to processing
post-stack seismic amplitude data to improve the seismic
interpretation resolution in channel sand body recognition
and fault interpretation (Gao, 2003; 2009; 2011). In addition,
texture processing technology was used to describe and
predict reservoir parameters, and for further research into
reservoir lithology (Yenugu et al, 2010). In addition a self-
organizing map (SOM) algorithm was utilized to analyze
3-D data volume of seismic texture attributes based on a gray
level co-occurrence matrix and to study the distribution laws
of channel sand bodies (de Matos et al, 2011). Of course,
texture technology can be used in other areas as well, such
as edge detection (Yang and Luo, 2012; Lu et al, 2012),
clustering analysis (Nanthagopal and Rajamony, 2012; 2013),
and medical science (Xu et al, 2011), and good application
results were obtained.

Post-stack seismic data are digital records which reflect
ups and downs of rock stratum, lithological change and
physical characteristics of reservoir (Liu and Wang, 2013;
Yuan and Wang, 2011). Therefore, post-stack seismic data
are the comprehensive responses of imaging laws of the rock
stratum. In this paper, we use texture processing technology
to describe and study lithology and physical properties
which are reflected by seismic amplitude records. It is well
known that coherence is an important method to identify
faults and channel sand bodies. The coherence analysis
technique uses lateral similarity measurement method, and
converts ordinary seismic amplitude into another record in
similarity metric space by mapping relationship. The first
generation coherence algorithm is of great significance and

it is simple and practical. However, its anti-noise capacity is
poor. The advantage of coherence is to combine kinematics
characteristics (travel time) with dynamic characteristics
(amplitude) of seismic signals and to clearly show lateral
variation of seismic data which is related to geological
changes, such as faults, lithofacies changes and channel
sand body distribution. In fact, texture is a kind of change
or duplicate of image gray value or color space. We can
hold the idea that texture is a pattern of grayscale or color
changes in a particular form and then they can produce the
pattern in the space. Texture is an inherent characteristic
of real patterns. Seismic texture attributes contribute to
the interpretation of seismogeology, but their capability of
identifying small faults, stratigraphic discontinuity, channel
sand body distribution and other phenomena is not as good
as coherence volume (Chuai et al, 2012; Gao, 2011; Wang et
al, 2012). On the basis of texture processing technology, this
paper establishes texture coherence to effectively recognize
channels and faults. Considering that seismic amplitude is
the record of stratified media, the seismic texture coherence
algorithm applies gray level co-occurrence matrix to mapping
seismic amplitude into image gray value. By using texture
technology, the method proposed in this paper establishes
an eigenmatrix of dissimilarity so that the seismic texture
coherence attribute has the characteristics of multi-trace
lateral restraint. This texture technology is used to implement
seismic coherence which is based on multi-trace constraints
and comprehensively considers the differences and
connections of trace data. The characteristic of this method is
to apply texture processing technology to converting seismic
amplitude data into gray domain. Therefore, various methods
which are used to process images can also be utilized to
process seismic data. Image processing techniques extend the
ways of processing seismic data. The C1 algorithm is simple
and effective, and so is the texture coherence algorithm. At
the same time, that texture describes layer details of seismic
data is introduced into this algorithm. Besides, compared
with the first generation coherence algorithm, this method
implements multiple directions information fusion which
belongs to the data fusion based on characteristic levels. The
analysis of cases will show the application of this method.

2 Theories

In the seismic texture coherence algorithm, establishing
the gray level co-occurrence matrix is important, and
finding the gray level co-occurrence matrix which meets
data characteristics is significant as well. In 2002, West et al
elaborated the characteristics of the gray level co-occurrence
matrix to which seismic event profile corresponds in different
sedimentary modes (West et al, 2002), while they did not state
the standards and principles of the gray level matrix structure
parameters. In this paper, section 2.1 states physical meaning
and mathematical definition of gray level co-occurrence
matrix. From the perspective of texture feature parameters,
section 2.2 and section 2.3 state an optimization method and a
criterion which are used to structure the critical parameters of
gray level co-occurrence matrix. And on this basis, section 2.4
proposes a seismic texture coherence algorithm and algorithm
flow.
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2.1 Gray level co-occurrence matrix

Generally speaking, the basic element which constitutes
texture is called the texture primitive or texture element. The
key point of texture technology is to find the gray level co-
occurrence matrix correctly. The gray level co-occurrence
matrix is one of the important means applied to analyzing
image texture features. According to gray tone level and gray
tone direction, we calculate gray correlation between two
pixels and then we get the joint probability density function
of two locations, namely p(i, j, d, 6). We use p(i, j, d, 0) to
make up the gray level co-occurrence matrix. This gray level
co-occurrence matrix can reflect not only the distribution
of texture gray level but also the gray level distribution
difference of texture formation structures which have same or
similar gray level tone. In fact, the gray level co-occurrence
matrix is the second-order statistical characteristic of the
image in different gray level tones.

If we define angle as 0, distance as d, the gray level co-
occurrence matrix whose gray level is L will be [p(i, j, d, 0)], .,.
We shall assume that this gray level co-occurrence matrix
is adequately specified by the matrix of relative frequency
p(i, j) with which two neighboring resolution cells separated
by distance d and angle & occur on the image, one with gray
tone i and the other with gray tone j. The gray level matrix of
an image shows the general information of the gray related to
direction, interval and change, which is defined as following
(Haralick et al, 1973),

pG, j,d,0) =#{((k,[),(m,n)) € (L, x L)< (L, xL,)| (M

k—m=0,|l—n|=d,1(k,l):i,1(msn):j}

(k, ) and (m, n): pixel coordinates; L,: row number of images;
L,: column number of images; #(x): the number of elements in
the set x; 6=0°, 45°, 90°, 135°; p: L*xL matrix which is named
gray level co-occurrence matrix. The normalized gray level
co-occurrence matrix is:
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where L means gray level.

In theory, p can be defined in any direction besides
6=0°, 45°, 90°, 135°, (k, I) and (m, n) can define the
gray level co-occurrence matrix, such as p(i, j, d,, 9,),
d, € {D((m,n),(k,l))}, where D is the Manhattan distance

||m - k|| + ||n - l" or linear distance \/(m —k)Y +(n-1).

2.2 Texture feature parameters of the gray level co-
occurrence matrix

In 1973, Haralick defined a variety of texture feature
parameters. According to its classification and actual

application effect, these are some of the characteristic
parameters (Gomez et al, 2012).

1) Sum average. This character reflects the average of the
gray scale.

n—1 n-1

i*p(,J) 3)

i=0 i=0

2) Sum of squares: Variance. This character reflects gray
scale transformation from one point to another.

=2 20— )% pli. ) @)

i
where, i is the mean of p(i, ;).

3) Inverse difference moment. This character reflects local
homogeneity.

PG, J)
RPN s 5)

4) Dissimilarity. This character is used to detect the local
dissimilarity.

n=1 n-1

fi=2 2 |i—jlpG.)) (6)

i=0 j=0
5) Entropy. This character is a measure of the uncertainty
associated with a variable in information theory.

=22 pli. ) *log(p(i. /) 7

6) Angular second moment. This character reflects the
uniformity of gray level distribution.

n n

Jo= 22

i=1 j=1

) (8)
7) Information measures of correlation.

HXY — HXY1 ©)
S =
max { HX ,HY }

where, HXY ==3 > p(i.]) *log(p(i. /),
i
HXY1==Y"%" p(i, /) *log{P.()P,(j)} ,HX and HY are
i

entropies of P (i) and P,(j), and the P, is P, = Z p(i, ), the
j=1

Pyis P} :zp(i:j)'

i=1

Notation:

p(i, j): (i, j)th entry in a normalized gray-tone spatial-
dependence matrix.

p(i): ith entry in the marginal-probability matrix obtained
by summing the rows of p(i, j),

P.=> pli.j).
=1

P.=> p(i,)),
i=1

n: number of distinct gray levels in the quantized image.
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2.3 Parameter optimization

The gray level co-occurrence matrix is a probability
of texture primitives which have positional relationship in
statistical space. This probability is related to generation
direction, pixel pitch and gray level of gray level co-
occurrence matrix. Therefore, it is crucial to determine the
gray level co-occurrence matrix formation parameters. In this
paper, we have considered all the texture feature parameters
from Eq. (3) to Eq. (8), we have discussed the difference
between stability and distinction degree of these parameters,
and then we have got the direction and distance applied
to constructing the gray level co-occurrence matrix, and
the selection rules and standards of gray level parameters.
The seismic event profile sample is given in Fig. 1, and its
texture feature parameters can be found in Haralick’s paper.
Discussing the stability and discrimination of the texture
characteristic parameters, we can get the rules and standards
of direction, distance and gray level, which are used to
construct the gray level co-occurrence matrix. Of course,
texture parameters of different seismic data in different areas
need to be selected by using the method provided in this
paper.

2.3.1 Samples

Taking into account the texture feature parameters of
the following six seismic event profile samples in Fig. 1,
we discuss selection criteria and principles of gray level co-
occurrence matrix structure parameters in detail.

In-line number In-line number

1 21 41 61 1 21 41 61

Time, s

(a) Sample 1 (b) Sample 2

In-line number In-line number

1 21 41 61 000‘1 21 41 61
0.00". ] ﬁ ’ .}-“
- . —

o ~ ." g -
E | |
I— |l e |

0.104 0.10

“»1

(c) Sample 3

(d) Sample 4

In-line number In-line number

1 21 41 61

Time, s

(e) Sample 5 (f) Sample 6

Fig. 1 Seismic event profile samples

2.3.2 Direction parameters

Fig. 2 is the distribution histogram which denotes texture
characteristic parameters of samples 1 to 6 in four directions.
This figure shows that the characteristic parameters of the
same samples in different directions are different. We can
qualitatively analyze Fig. 2 and then draw the following
conclusions. For one thing, texture feature parameter values
dominate in the 0 degree and 90 degree directions. It is
consistent with the layered hypothesis of the formation that
samples have strong regularity in horizontal and vertical
directions. For another, different texture feature parameters
have different sensitivity to different samples. In the process
of actual calculation, this paper uses weighted value in four
directions to select direction parameters in order to ensure the
rotation invariance of the parameters.

Value

135
Angle, degree

B Sum average m Variance O Inverse difference moment

o Dissimilarity u Entropy m Angular second moment

Fig. 2 Distribution histogram of texture feature parameters in
different directions

2.3.3 Distance parameters

Fig. 3 illustrates that as the value of the distance parameter
increases, the sensitivity of parameter distance discrimination
is getting worse from “distance=2" to “distance=14". It can
be concluded in Fig. 3 that different characteristic parameters
have different sensitivity to different samples. Therefore, the
distance parameter which is used to structure gray level co-
occurrence matrix can be determined.
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1.10

Fig. 3 Scatter diagrams of texture feature parameters and distance change. In Fig. 3, (a) to (f) are scatter diagrams denoting texture feature
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2.3.4 Gray level parameters

Sum average

Inverse difference moment

As is shown in Fig. 4(a), 4(c), 4(e) and 4(f), when the
abscissa of the grayscale parameter reaches 16, the resolutions

Entropy

of seismic profiles of different samples become best. When
the abscissa is 32, the resolutions follow them. Therefore, one

of the important parameters of the gray level co-occurrence
matrix is grayscale.
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2.4 Seismic texture coherence algorithm

In seismic exploration, seismic data or digital records of imaging points record the depth of a subsurface interface and the
ups and downs of this interface. Therefore, if we map the seismic data to pixel space through the gray level matrix function,
these data can be processed in various methods of digital image processing. In this paper, the gray matrix function of the
texture mapping is used to map the seismic data in accordance with different directions and different distances. The relationship

among seismic data is considered in new distance space. We define the seismic texture coherence algorithm as follows,

p(tar’p(doﬂg)):

K
> {[”o (t+ kAL |, g, ) =1 (1) |p<do,9>}[”1 (E+ kAL =7 ) |ya,.0) =16 (E=T) gy 0) J}

—K

-——K k=K

1 K
e = KT
k=—K

k=
K 2 K 2
{ Z [”O(Hkm) lotay.0r —Ho (1) |p(do,0)] y Z [“I(Hkm_fx) lotdy.y ~#a(t=7,) |p<d0,a>} }
k

(10)

u, (¢ + kAt), denotes the average value of mth trace in the time window analyzed, At is the time lag,

and 2k+1 is the number of samples in the window, p(d,, ) denotes the gray level matrix in which d, is the distance and 6 is the

direction, u,, is the mth trace of original seismic data within the time window analyzed. Finally, we have the texture coherence

attribute of a 3-D seismic data cube,

€ le.ptay.on = \/ (max Pl oy )'(max Plic ity a5y )'(max Pl a0y )'(max Pl ity 55 )))

where, max p |(r,p(d0,0)): max(p(t,z, p(d,,0))) |(T,p(do,9)) .

The whole algorithm flow is summarized as follows:

1) Pre-process post-stack seismic amplitude data: remove
noise with seismic event edges preserved, and enhance
resolution (Yuan and Wang, 2013a; 2013b).

2) Establish the gray level co-occurrence matrix and
initialize 6, d and L.

3) Calculate texture characteristic parameters.

4) According to the texture characteristic parameters,
refine matrix parameters of the gray level co-occurrence
matrix: 6, d and L.

5) Calculate the matrix parameters of the gray level co-
occurrence matrix. If they are reasonable, go to step 6,
otherwise go to step 2.

6) Use Egs. (10)-(11) to calculate the texture coherence.

7) Output the results.

The 3-D seismic texture coherence data volumes which
are obtained from the workflows above are used to identify
channels and faults. In order to test the effectiveness of this
algorithm, it is applied to field data of an oilfield in China to
identify the channel sand bodies and faults. And we will give
a practical example in the next section.

3 Cases

In our study, practical 3-D seismic data from an oil
field is used to test the algorithm. The target area is mainly
shore-shallow lake with sedimentation occurring in arid and
semiarid climates. Then the lake basin spreaded, the lake
bottom was uplifted and some meanders developed. The
channel sand in this area is thin and the channels are narrow,

(11)

which makes the channel features hard to see and makes it
difficult to identify channels from seismic sections alone (Fig.
5). It is a typical micro-amplitude structure and lithology trap
complex reservoir.

As we can see in Fig. 5, profile Pa is along channel
seismic lineup profiles, while profiles Pb, Pc and Pd are
perpendicular to the channel. In profiles Pb, Pc and Pd, we
can hardly see seismic event characteristics which would be
convex or concave in the direction of vertical channel sands,
which is caused by the thin and narrow channel sand bodies.
Therefore, it is difficult for conventional seismic attributes to
identify the target geological body. In Fig. 5, the data framed
by red area are applied to acting as test data of this paper.
The analysis of the results will be given from Fig. 6 to Fig. 9
below.

In this paper, we choose the amplitude attributes that
are sensitive to channels and faults in the area. Fig. 6 is the
maximum amplitude attribute, and the outline of the channels
is vague. The channel boundaries are hard to distinguish and
there is almost no response of the northeast-southwest fault
F3. Fault F1 and fault F2 are not separated from each other
in Fig. 6. Also fault F4 associated with fault F3 cannot be
identified.

Fig. 7 shows the texture information attribute which is
extracted by using the texture algorithm. In this figure, the
outline of the channel is evident (the black dashed lines are
the boundaries of the channel), and the nearly northwest-
southeast fault F1 and fault F2 and the northeast-southwest
fault F3 are all clearer than those in Fig. 6. However, it is still
hard to identify fault F4.

Amplitude or texture attributes cannot clearly identify
channel sand bodies and faults of complex structure areas.
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Fig. 8 shows the coherence which is extracted by the first
generation coherence algorithm, in which the channel has
mid-strong or strong values surrounded with relatively low
values. The boundary of the channel is clear and we can
clearly see the extension features of the channel (dashed lines
are its boundaries). The nearly northeast-southwest fault F3
and nearly northwest-southeast fault F2 are clear in the figure.
However, fault F1 and fault F4 are not clear in this attribute
slice.

Fig. 9 shows the seismic texture coherence slice obtained
by using the method given in this paper. In Fig. 9, the channel
has strong values with surrounding low values. The difference
between the sand in the channel and the mud stone is much
more apparent in the seismic texture coherence slice than in
seismic coherence slice, resulting in the clearer outline of the
channel (dashed lines are its boundaries). In comparison with
the maximum amplitude in Fig. 6 and the texture attribute

in Fig. 7, the seismic texture coherence shown in Fig. 9 is
more effective in identifying the boundaries of the channel.
The faults which cannot be identified in Fig. 6 and Fig. 7
are distinguishable in Fig. 9. Compared with the seismic
coherence in Fig. 8, fault F4 in Fig. 9 is still not depicted very
clearly. But the response characteristics of fault F1, F2 and F3
are much superior to those in Fig. 8. Especially, the faults F1
and F2 crosscut the channel in Fig. 9, while this crosscutting
feature is not obvious in Fig. 8.

There is evidence in the corresponding seismic profiles
shown in Fig. 10 and Fig. 11. In the event profile P1 in Fig.
10, the events break at F3, which prove that the interpretation
of fault F3 in Fig. 8 and Fig. 9 is reasonable. The similar
evidence that the events cross and joint at the locations of
fault F1 and F2 can also be found in profile P3 shown in
Fig. 11(b). In profile P2 in Fig. 11(a), the events break and
the train of waves is discontinuous at fault F3 and F4, and

PaM. ;—- —

Fig. 5 Channels and seismic event profiles. In Fig. 5, profile Pa is the seismic event profile along channels; profiles

Pb, Pc and Pd respectively are seismic event profiles which are perpendicular to the channel from top to bottom; the

red arrow points to the target horizon; the area delineated by the red rectangle is the data area which is tested by the
seismic texture coherence algorithm proposed in this paper

P2

Cross-line number

High

In-line number

Fig. 6 The maximum amplitude attribute slice. In Fig. 6, P1 is the location of seismic event profile P1 in Fig. 10; P2 is
the location of seismic event profile P2 in Fig. 11(a); P3 is the location of seismic event profile P3 in Fig. 11(b); the brown
ellipses F1, F2, F3, F4 are the serial numbers of the faults; black dashed lines are the boundaries of the channel
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thus it is reasonable to draw a fault here. Therefore, the fault  this paper, are reliable. This example shows that both channel
location and its direction, which are interpreted according to  and faults of field data can be successfully identified by using
the attribute (Fig. 9) calculated by the algorithm studied in  the seismic texture coherence algorithm.

Cross-line number

In-line number

Fig. 7 Texture information attribute slice. In Fig. 7, P1 shows the location of seismic event profile P1 in Fig. 10; P2
is the location of seismic event profile P2 in Fig. 11(a); P3 is the location of seismic event profile P3 in Fig. 11(b); the
brown ellipses F1, F2, F3, F4 are the serial numbers of the faults; black dashed lines are the boundaries of the channel

High

Cross-line number

In-line number

Fig. 8 The first generation coherence attribute slice. In Fig. 8, P1 shows the location of seismic event profile P1 in Fig. 10; P2
is the location of seismic event profile P2 in Fig. 11(a); P3 is the location of seismic event profile P3 in Fig. 11(b); the brown
ellipses F1, F2, F3, F4 are the serial numbers of the faults; black dashed lines are the boundaries of the channel

High

Cross-line number

e

l‘?':l#ﬂ;ﬂ. .m{:ﬁr l'; :..q- ; .
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Fig. 9 Secismic texture coherence attribute slice. In Fig. 9, P1 is the location of seismic event profile P1 in Fig. 10; P2
shows the location of seismic event profile P2 in Fig. 11(a); P3 is the location of seismic event profile P3 in Fig. 11(b); the
brown ellipses F1, F2, F3, F4 are the serial numbers of the faults; black dashed lines are the boundaries of the channel
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Fig. 11 Scismic event profiles P2 and P3

4 Conclusions

In this study, seismic attribute analysis techniques
are applied to fault and channel identification in clastic
reservoir exploration and development. On the basis of
previous research results, the texture coherence algorithm
of seismic attribute has been suggested and generalized to
fault and channel identification and quantative evaluation. It
implements information fusion of many directions and lateral
constraint of multiple traces, and it first clearly proposes
an optimization method and a criterion used to build gray
level co-occurrence matrix parameters in the seismic texture
coherence algorithm. The process utilized to select texture
parameters of gray level co-occurrence matrix is universal.
This algorithm has advantages over the first generation
coherence algorithm in following two aspects.

1) To combine the three types of parameters (different
directions, gray tone level and distance), we use the mapping
function of the gray level co-occurrence matrix usually
deployed in texture processing technology to transfer the
seismic amplitude records into texture attributes. This is
the foundation of the seismic texture coherence algorithm
suggested in this paper.

2) The texture coherence algorithm has some of the
merits of the C1 algorithm in conciseness and computational
efficiency. Moreover, it also has advantages in information
fusion in many directions and multiple traces, and it enhances
the resolution of faults and channel identification.

Field applications show that the method suggested in this
paper has better resolution and can show in detail complex
geological targets. Therefore, the method lays a sound
foundation for identifying and evaluating complex geologic
bodies using seismic data.
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