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Abstract
Yield stress, as the key parameter to characterize the network strength of waxy oil, is important to the petroleum pipeline 
safety. Reducing the yield stress of waxy oil is of great significance for flow assurance. In this study, the effect of alternat-
ing magnetic field (intensity, frequency) on the yield stress of a waxy model oil with nanocomposite pour point depressant 
(NPPD) is systematically investigated. An optimum magnetic field intensity and frequency is found for the reduction in yield 
stress. When adding with NPPD, the heterogeneous nucleation of NPPD contributes to the reduction in yield stress for waxy 
model oil. Interestingly, the magnetic field is helpful for the modification of yield stress at a lower frequency and intensity 
before the optimal value; however, the modification is found to be weakened when the magnetic field is further increased 
after the optimal value. Possible explanation is proposed that the aggregation morphology of wax crystal would be altered 
and results in the release of wrapped oil phase from the network structure under the magnetic field.
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1  Introduction

Wax components in crude oil result in complex precipitation 
and crystallization behavior (Bai et al. 2019; Guo et al. 2004; 
Ganeeva et al. 2016; Hassanzadeh et al. 2018; Li et al. 2018; 
Lim et al. 2018; Wang et al. 2019; Zhang et al. 2013). In low-
temperature environment (e.g., deep water, polar region), 
the precipitated wax crystal forms three-dimensional net-
work and may cause serious flow assurance problem such 

as coagulation, blockage and even rupture during pipeline 
transportation (Chevallier et al. 2000; Pechook et al. 2016; 
Visintin et al. 2005). Different chemical and physical meth-
ods are considered to modify the crystallization of crude oil 
(Ashbaugh et al. 2002; Castro and Vazquez 2008; Deshmukh 
and Bharambe 2008; Yang et al. 2019). Based on copolym-
erization and chemical grafting, pour point depressant (PPD) 
such as ethylene–vinyl acetate copolymers (EVA), acrylic 
acid ester polymers and styrene–maleic anhydride–acrylic 
acid alcohol ester copolymers (Binks et al. 2015; Castro and 
Vazquez 2011; Deshmukh and Bharambe 2014; Huang et al. 
2013; Jun et al. 2010; Li et al. 2012; Liu et al. 2015; Soni 
et al. 2008; Soni et al. 2010; Xu et al. 2013) are synthesized; 
however, the fluidity of modified crude oil might deterio-
rate when temperature rises due to its instability (Soni et al. 
2008).

In recent years, nanoparticle is selected to develop nano-
composite pour point depressant (NPPD) (AlSabagh et al. 
2016; Gao et al. 2017; He et al. 2016; Huang et al. 2018, 
2019; Norrman et al. 2016; Song et al. 2016; Tu et al. 2018; 
Yang et al. 2017; Yao et al. 2018; Zhao et al. 2018). Since 
the surface effect generated in nanometer dimension, nano-
particle possesses unique physical–chemical properties and 
has aroused tremendous attention in synthesizing various 
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function materials (Guo et al. 2004; Ganeeva et al. 2016; Li 
et al. 2018; Lim et al. 2018; Zhang et al. 2013). Research 
on NPPD’s synthesis and application has been conducted 
in the modification of wax crystallization (AlSabagh et al. 
2016; He et al. 2016; Huang et al. 2019; Tu et al. 2018). 
Benefit from the specific lamellar structure and good dis-
persibility of nanoparticle, NPPD is prepared by blending 
of organic modified montmorillonite layer and different 
polymers (AlSabagh et al. 2016; Gao et al. 2017; He et al. 
2016; Huang et al. 2018, 2019), which demonstrates bet-
ter modification compared to traditional PPDs in reducing 
pour point and bulk phase viscosity. Meanwhile, organic 
modified silica nanoparticle is applied to prepare NPPD 
which demonstrates obvious improvement in the waxy oil 
fluidity (Norrman et al. 2016; Song et al. 2016). In addition, 
the graphene oxide and attapulgite are introduced into the 
development of NPPD and gained good achievement (Tu 
et al. 2018; Zhao et al. 2018).

Physical methods, as electrical or magnetic, are widely 
investigated (Bacri et al. 1995; Du et al. 2018; Martínez-
Palou et al. 2011; Ma et al. 2017; Tao et al. 2014). Both the 
electrical and magnetic treatments can depress the viscosity 
of waxy crude oil (Martínez-Palou et al. 2011). Under the 
electric field, it is revealed that the aggregation of suspended 
crystal particles into chains should be responsible for the 
weakness of crystal network (Tao et al. 2014). Similarly, 
the suspended crystal particles aggregate and lead to the 
decrease in waxy crude oil viscosity when applying a pulsed 
magnetic field (Rosensweig 1996; Tao and Xu 2006). How-
ever, the modification effect of magnetic field is selective 
which is not only related to the properties of crude oil, but 
also depended on the metal ions (Mn2+, Sr2+, Br−) and water 
content in crude oil (Gonçalves et al. 2010; Gonçalves et al. 
2011; Shliomis and Morozov 1994).

With the combination of NPPD and traditional PPD, the 
synergistic effect of magnetic field and PPDs has rarely 
been investigated. In the present work, the synergistic modi-
fication effect of an alternating magnetic field and a devel-
oped NPPD (He et al. 2016; Huang et al. 2018; Huang et al. 
2019) on waxy model oil is investigated. The yield stress of 
the waxy model oil is systematically characterized. Param-
eters as magnetic field intensity, frequency and temperature 
are considered, which aims to advance the understanding 
of synergistic modification methods in waxy oil fluidity 
improvement.

2 � Experimental materials and methods

The waxy model oil is prepared by dissolving 10 wt% 
mixed wax (Daqing Refining & Chemical Company) 
into the solvent oil D80 (ExxonMobil). The viscosity 
(25 °C) of D80 is 2.09 mm2/s, and density (15 °C) is 

0.795 g/cm3. Carbon distribution of oil and mixed wax 
is provided in Table 1. The NPPD used is developed by 
melting blending of EVA and montmorillonite, organic 
modified by hexadecyl trimethyl ammonium bromide 
(Qin et al. 2005). Details of NPPD used can be found in 
studies (He et al. 2016; Huang et al. 2018; Huang et al. 
2019). NPPD is dissolved in diesel solvent at a concen-
tration of 3% (mass fraction) under stirring for 30 min 
before added into waxy model oil.

Wax appearance temperature (WAT) of undoped/doped 
waxy model oil is measured with differential scanning 
calorimeter (TA2000). The measured WAT is shown in 
Table 2. Yield stress of waxy model oil under magnetic 
field is obtained by rheometer (TA, DHR-2). The MR 
module of rheometer consists of upper and lower cover 
assembly, and a cylindrical core surrounded by solenoid 
(Fig. 1). Firstly, heating the waxy model oil to 60 °C and 
keeping 2 h; then, cooling to set temperature at 0.5 °C/
min and keeping for 30 min. Finally, applying shear stress 
from 0 to 600 Pa at 5 Pa/min under magnetic field and 
obtaining the stress–strain curves. Crystal morphology of 
waxy model oil treated with magnetic field (0.3 T, 20 Hz) 
is observed by microscope (BX51) at 15 °C.

Table 1   Carbon distribution of D80 and mixed wax

Carbon 
distribution of 
D80

Carbon 
contents of 
D80, %

Carbon distribu-
tion of mixed 
wax

Carbon contents 
of mixed wax, %

11 12.6 29 4.6
30 2.8

12 31.5 31 6.0
32 11.4

13 30.5 33 9.2
34 9.2
35 9.3

14 21.6 36 8.9
37 8.1

15 3.6 38 6.8
39 5.7
40 9.1

Table 2   WAT of undoped/doped (200 mg/kg) waxy model oil

Samples Waxy model oil Waxy model 
oil + EVA

Waxy model 
oil + NPPD

WAT, °C  26.5 25.6 27.3



Petroleum Science	

1 3

3 � Results and discussion

To gain better understanding on the synergistic effect, an 
alternating magnetic field is applied to the NPPD-doped 
and EVA-doped waxy model oil. For example, combined 
with magnetic field (0.2 T, 20 Hz), the yield stress further 
decreases from 46 to 19 Pa (EVA doped) and 30 to 14 Pa 
(NPPD doped), as shown in Fig. 2. Factors influencing 

the synergistic modification of magnetic field and NPPD 
are systematically investigated.

3.1 � The synergistic modification effect 
under different temperatures

When the temperature decreases to WAT, wax crystals pre-
cipitate and connect with each other. As a key parameter 
to characterize the strength of crystal network, the yield 
stress is temperature dependent (Venkatesan et al. 2005). 
The effect of magnetic field on yield stress under different 

Upper cover assembly
Upper plate and motor shaft

Lower plate 

Cylindrical core
Solenoid

Chamber for recirculating
heat exchange fluid

Heat exchange inlet/outlet

Magnetic field line
Plate

Waxy oil

(a) (b)

Fig. 1   MR module of rheometer, a structure diagram of MR module (TA Instruments-Waters LLC 2015), b schematic diagram of MR module

Fig. 2   Synergistic effect of magnetic field  (0.2 T, 20 Hz) and EVA/
NPPD (200 mg/kg) on the yield stress of waxy model oil (15 °C)
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Fig. 3   Yield stress curves of undoped waxy model oil under magnetic 
field at different temperatures (15, 20, 25 °C)
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temperatures is important. An optimized magnetic field in 
current work (0.3 T, 20 Hz) is applied to the waxy model 
oil at different temperatures. The results of yield stress are 
shown in Figs. 3, 4 and 5.

For undoped waxy model oil, the yield stress with-
out magnetic field is 196 Pa at 15 °C, while it decreases 
to 127 Pa (35.2% reduction) under magnetic field (0.3 T, 

20 Hz), as shown in Fig. 3. At 20 °C, the yield stress without 
magnetic field is 41 Pa, while the yield stress decreases to 
16 Pa (60.9% reduction) under magnetic field. Similar trend 
is obtained at 25 °C, where the yield stress varies from 24 
to 9 Pa (62.5% reduction).

For doped waxy model oil, the yield stress at 20, 15 and 
10 °C is selected and compared as shown in Figs. 4 and 
5 (25 °C is not demonstrated due to a limited yield stress 
with PPD). For EVA-doped waxy model oil, the yield stress 
decreases from 16 to 4 Pa (20 °C), 46 to 8 Pa (15 °C), 102 
to 23 Pa (10 °C) under magnetic field (0.3 T, 20 Hz) in 
Fig. 4. The reduction in yield stress under magnetic field is 
75% (20 °C), 82.6% (15 °C), 77.4% (10 °C) under magnetic 
field. Similar effect is found in NPPD-doped waxy model 
oil; the yield stress decreases from 7 to 1 Pa (20 °C), 30 
to 5 Pa (15 °C), 50 to 14 Pa (10 °C) under magnetic field 
(0.3 T, 20 Hz) in Fig. 5. The reduction in yield stress is 
85.7% (20 °C), 83.3% (15 °C), 72% (10 °C) under magnetic 
field, as shown in Table 3.

The yield stress and its reduction are further compared 
at 15 °C. It is found that the reduction in yield stress is 
35.2% (196 to 127 Pa) for undoped waxy model oil. How-
ever, with synergistic modification of NPPD or EVA and 
magnetic field, the reduction in yield stress is 83.3% (30 
to 5 Pa) for NPPD-doped and 82.6% (46 to 8 Pa) for EVA-
doped waxy model oil. The synergistic effect of magnetic 
field and NPPD is obviously compared to magnetic field 
alone. Furthermore, the synergistic effect under different 
magnetic intensities and frequencies is further investigated 
in Sects. 3.2 and 3.3.

3.2 � The effect of magnetic intensity on synergistic 
modification

The effect of magnetic field intensity (0–0.5 T) on yield 
stress of waxy model oil is discussed at the magnetic field 
frequency of 20 Hz. Based on Table 3, an intermittent tem-
perature is selected for demonstration (undoped oil 20 °C, 
doped oil 15 °C). For undoped oil (20 °C), the yield stress 
decreases from 41 to 37 Pa (0.1 T), 28 Pa (0.2 T), 16 Pa 
(0.3 T) and 5 Pa (0.4 T), respectively. With the inten-
sity further increasing to 0.5 T, the yield stress slightly 
rebounds to 7 Pa, as shown in Fig. 6.

For EVA-doped oil (200  mg/kg, 15  °C), the yield 
stress is sensitive to the variation of magnetic field inten-
sity which decreases from 46 to 25 Pa (0.1 T), 19 Pa 
(0.2 T), 8 Pa (0.3 T) and 5 Pa (0.4 T). Similar trend is 
obtained that with the intensity increasing to 0.5 T, the 
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Fig. 4   Yield stress curves of EVA-doped (200 mg/kg) waxy model oil 
under magnetic field at different temperatures (10, 15, 20 °C)
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Fig. 5   Yield stress curves of NPPD-doped (200 mg/kg) waxy model 
oil under magnetic field at different temperatures (10, 15, 20 °C)
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yield stress increases to 9 Pa (Fig. 7). For NPPD-doped 
oil (200 mg/kg, 15 °C), the yield stress decreases from 30 
to 27 Pa(0.1 T), 14 Pa (0.2 T) and 5 Pa (0.3 T). When the 
magnetic field intensity increases to 0.4 and 0.5 T, the 
yield stress rebounds to 16 Pa and 20 Pa (Fig. 8).

Yield stress and its reduction in NPPD-/EVA-doped 
waxy model oil (200 mg/kg, 20 Hz, 15 °C) is further com-
pared in Fig. 9; it can be gained that the optimal magnetic 
field intensity in EVA-doped oil is 0.4 T, while it is 0.3 T 
in NPPD-doped oil.

3.3 � The effect of magnetic frequency on synergistic 
modification

The effect of magnetic field frequency (0–50 Hz) on yield 
stress of waxy model oil is discussed at the magnetic field 
intensity of 0.3 T. For undoped oil (20 °C), the yield stress 
decreases from 41 to 29 Pa (5 Hz), 24 Pa (10 Hz), 16 Pa 
(20 Hz) and 12 Pa (40 Hz), respectively. However, an oppo-
site trend is observed that the yield stress rebounds to 21 Pa 

Table 3   Yield stress of wax model oil under magnetic field (0.3 T, 20 Hz)

Reduction = 100 × (yield stress without magnetic − yield stress under magnetic field)/yield stress without magnetic

Samples Temperature, °C Yield stress, Pa Reduction, %

Without magnetic Magnetic field, 0.3 T, 20 Hz

Undoped waxy model oil 15 196 127 35.2
20 41 16 60.9
25 24 9 62.5

EVA-doped waxy model oil 10 102 23 77.4
15 46 8 82.6
20 16 4 75.0

NPPD-doped waxy model oil 10 50 14 72.0
15 30 5 83.3
20 7 1 85.7
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Fig. 6   Yield stress curves of undoped waxy model oil under magnetic 
field (20 Hz, 20 °C) at different intensities (0–0.5 T)
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Fig. 7   Yield stress curves of EVA-doped (200 mg/kg) waxy model oil 
under magnetic field (20 Hz, 15 °C) at different intensities (0–0.5 T)
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with the frequency further increasing to 50 Hz, as shown 
in Fig. 10.

For EVA-doped oil (200 mg/kg, 15 °C), the yield stress 
decreases from 46 to 39 Pa (5 Hz), 15 Pa(10 Hz) and 8 Pa 
(20 Hz). There is a minimum yield stress of 6 Pa (40 Hz). Then 
the yield stress increases to 9 Pa with the frequency increasing 
to 50 Hz (Fig. 11). For NPPD-doped oil (200 mg/kg, 15 °C), the 

yield stress decreases from 30 to 27 Pa (5 Hz), 24 Pa (10 Hz) 
and 5 Pa (20 Hz). An opposite trend is observed that the yield 
stress rebounds and increases to 15 and 25 Pa with the fre-
quency increasing to 40 and 50 Hz (Fig. 12).
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Fig. 8   Yield stress curves of NPPD-doped (200 mg/kg) waxy model 
oil under magnetic field (20  Hz, 15  °C) at different intensities 
(0–0.5 T)

Fig. 9   Yield stress and its reduction in NPPD-/EVA-doped (200 mg/
kg) waxy model oil under magnetic field (20 Hz, 15 °C) at different 
intensities (0–0.5 T)
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Fig. 10   Yield stress curves of undoped waxy model oil under mag-
netic field (0.3 T, 20 °C) at different frequencies (0–50 Hz)
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Fig. 11   Yield stress curves of EVA-doped (200 mg/kg) waxy model 
oil under magnetic field (0.3  T, 15  °C) at different frequencies 
(0–50 Hz)
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Yield stress and its reduction in NPPD-/EVA-doped waxy 
model oil (200 mg/kg, 0.3 T, 15 °C) is further compared in 
Fig. 13. It can be gained that the optimal magnetic field fre-
quency in EVA-doped oil is 40 Hz, where the yield reduction 
is better than other frequencies, while the optimal magnetic 
field frequency in NPPD-doped oil is 20 Hz (Fig. 13).

Actually, yield stress behavior under different magnetic 
intensities and frequencies reflects the influence of magnetic 
field on wax crystal’s network. As shown in Fig. 14a, the 
precipitated wax crystals obviously interacted with each 
other and formed network structure in undoped waxy model 
oil; the yield stress is 196 Pa at 15 °C. With the addition 
of EVA (Fig. 14c) or NPPD (Fig. 14e), co-crystallization 
in EVA or heterogeneous nucleation in NPPD-doped sys-
tem (He et al. 2016; Norrman et al. 2016) demonstrates the 
modification of crystal morphology; consequently, the yield 
stress is reduced to 46 Pa (EVA) and 30 Pa (NPPD) at 15 °C. 
It is interesting that an aggregation trend of wax crystals is 
observed after treated with magnetic field, which contrib-
utes to the release of liquid oil wrapped between crystal 
network (Ma et al. 2017; Tao et al. 2014). The change of wax 
crystal morphology under magnetic field results in a lower 
yield stress (undoped oil, 196 Pa to 127 Pa; EVA-doped oil, 
46 Pa to 8 Pa; NPPD-doped oil, 30 Pa to 5 Pa) (AlSabagh 
et al. 2016). However, when the optimum magnetic field 
is exceeded, aggregation of wax crystals might reversely 
strengthen the crystal network. (Fig. 15)

4 � Conclusions

The effect of alternating magnetic field (intensity, frequency) 
on the yield stress of waxy model oil with/without PPDs is 
investigated. It is found that the optimum magnetic intensity 
is 0.4 T for EVA-doped oil and is 0.3 T for NPPD-doped 
oil. Furthermore, for magnetic frequency, the optimal value 
is 20 Hz for NPPD-doped system, but 40 Hz for EVA-
doped system. When the magnetic intensity or frequency 
is lower than this optimum value, the yield stress reduction 
is enhanced with the increase in intensity and frequency. 
However, the modification is found to be weakened when the 
magnetic field is further increased after the optimal value. 
Under the magnetic field, the aggregation of wax crystals 
would be altered which could be owed to the variation of 
yield stress.
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Fig. 12   Yield stress curves of NPPD-doped (200  mg/kg) waxy 
model oil under magnetic field (0.3 T, 15 °C) at different frequencies 
(0–50 Hz)
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Fig. 14   The morphology of undoped/doped waxy model oil with/without magnetic field (0.3 T, 20 Hz)
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