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a b s t r a c t

The mechanisms of lacustrine organic-rich shale formation have attracted attention due to its association
with global shale oil and shale gas exploration. Samples of general-quality and excellent-quality source
rocks, and oil shale from the Beibu Gulf Basin were analyzed to investigate their organic geochemistry,
palynofacies, and trace elements. Hydrocarbon potential was higher in the oil shale (29.79 mg/g) than in
the general-quality source rock (3.82 mg/g), and its kerogen type was I-II2. Hydrogen-rich liptinite
(cutinite and sporinite) components derived from terrigenous higher plants provided most of the hy-
drocarbon potential of excellent-quality source rock and oil shale. Under the influence of depression-
controlling fault activity, a deeper subsidence center promotes the deposition of excellent-quality
source rock and oil shale in brackish-hypoxic bottom water. A shallower subsidence center, due to
subsag-controlling fault activity, promotes the formation of excellent-quality source rock under fresh-
brackish and weak oxidation-weak reducing conditions. The local uplift and shallow-slope led to the
formation of general-quality source rock, under freshwater weak-oxidation conditions. A model was
established for organic matter (OM) accumulation in organic-rich shales, accounting for fault activity,
terrigenous hydrogen-rich OM, and the preservation conditions, to predict the development of excellent-
quality source rock from areas with low levels of exploration.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Organic-rich shales are the most important hydrocarbon source
rocks in continental sedimentary basins, providing shale oil and
shale gas globally (Potter et al., 2005; Lazar et al., 2015; Zou et al.
2016, 2019, 2019; Zhao et al. 2016, 2019). Organic matter enrich-
ment is a complex physical and chemical process, which is influ-
enced by several factors including the input, burial, and
preservation of organicmatter in sediments (Zonneveld et al., 2010;
Zou et al., 2019). Lacustrine organic-rich shale formation is believed
to be determined mostly by terrigenous nutrition input, algal
and Gas, China University of
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blooms, sedimentary rates, saline stratification, and the formation
of anoxic conditions (Lazar et al., 2015; Louchouarn et al., 1999;
Jeppesen et al., 2007; Zhao et al., 2016; Liang et al., 2018). The
models and mechanism for organic matter accumulation are
focused mostly on bottom-water redox conditions and ocean sur-
face primary productivity (Sageman et al., 2003; Rimmer, 2004;
Tyson, 2005; Mort et al., 2007). Lacustrine organic-rich shale
accumulation is sensitive to seasonal and paleogeomorphological
variability, terrigenous organic matter input, and sediment filling
rates, factors that enhance their heterogeneity (Louchouarn et al.,
1999; Carroll and Bohacs, 1999; Bohacs et al., 2000; Liang et al.,
2018; Wang et al., 2018). In addition to organic matter originating
from the abundant phytoplankton in surface water, hydrogen-rich
organic matter is also derived from higher plants forming, for
instance, cutinite, resinite, sporinite, which is transported into
sediments by flowing rivers (Boucsein and Stein, 2000; Li et al.,
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Fig. 1. Structure map and profile of the Weixinan depression, Beibu Gulf Basin.
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2006; Huang et al., 2013; Hakimi and Ahmed, 2016). The quantities
of nutritional elements associated with algal blooms and with the
reducing conditions of deep waters are significantly influenced by
seasonal climate changes (Jeppesen et al., 2007; Hallegraeff, 2010;
Liang et al., 2018). The weak water circulation activity in lacustrine
basins inhibits the overturn of deep waters, causing water-column
stratification, which favors the formation of anoxic bottom-water
conditions (Picard, 1971). Water-column stratification can be
induced by a thermocline in freshwater lake basins, under a wet
climate regime, and by a halocline in saline and brackish lake ba-
sins, under a continental dry regime. Salinity-driven stratification
induced by seawater intrusion and strong evaporation is more
stable, and favors the preservation of organic matter (Surdam and
Staley, 1979; Song et al., 2012, 2016; Xu et al., 2019). Moreover,
the distribution of organic-rich shales within lacustrine basins is
affected by lake water-level variability, tectonics, sediment prove-
nance, and basin morphology (Lemons and Chan, 1999; Carroll and
Bohacs, 1999; Bohacs et al., 2000). Accordingly, organic-rich shales
differ substantially between sedimentary basins in terms of their
depositional mechanisms, distribution patterns, organic matter
composition, and kerogen types.

Following the formation of an important hydrocarbon-rich sag
developed in Beibu Gulf Basin, several studies have examined the
formation of source rock in the Weixinan Sag. Most previous
studies have focused on the organic geochemical characterization
of source rocks of the Liushagang Formation (Song et al., 2012;
Huang et al., 2017; Zhou et al., 2019). However, few studies have
focused on the accumulation of organic matter or the development
of excellent-quality source rocks in the Liushagang Formation
(Huang et al. 2012, 2013, 2013; Nytoft et al., 2020). Although high-
quality source rock is believed to form under the anoxic-reducing
conditions of bottom water and under higher primary productiv-
ity, it is hard to predict the development and distribution of
organic-rich shale in other poorly explored sags, such as the
Haizhong and western Wushi Sags, for which there are few
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boreholes and core samples (Huang et al. 2012, 2013, 2017). Further,
regional structural activity and the sedimentary system is known to
affect the hydrocarbon potential and distribution of lacustrine
source rocks in the Beibu Gulf Basin (Xie et al., 2011; Xu et al., 2013;
Liu et al., 2014). Therefore, it is necessary to clarify the influence of
structural activity, sedimentary sands, and the depositional envi-
ronment on the distribution and development of source rock in the
Weixinan Sag. This will make it possible to accurately predict pe-
troleum resources in the Haizhong and western Wushi Sags.

This study examined differences in hydrocarbon generation
potential, organic matter provenance, and source rock components
in the Weixinan Sag. It investigated the depositional environment
of the source rock, the rate of structural activity, and sand distri-
bution, to determine the hydrocarbon potentials of the source
rocks, and to understand how high-quality source rock was formed.
A model was established to describe the formation of high-quality
source rock, to assist in predicting petroleum resources in poorly
explored sags with similar geological settings.
2. Geological setting

The Beibu Gulf Basin is one of the most petroliferous basins in
the northern continental shelf area of the South China Sea, covering
an area of 3.9 � 104 km2; it was formed by Paleogene syn-rift ac-
tivity (65-23 Ma) and subsequent Neogene post-rift tectonic ac-
tivity, from 23 Ma to the present (Fig. 1) (Zhang et al., 2014; Liu
et al., 2014). The Weixinan Sag, controlled by the Weixinan fault,
is in the northeastern part of the Beibu Gulf Basin, and is separated
from the Haizhong and Wushi sags by the Weixinan low uplift and
Qixi uplift (Fig.1). The sag is divided into three subsags (A, B, and C),
which formed during three extensional episodes: the onset of
Paleocene, Eocene, and Middle-Late Oligocene, respectively. The
subsags were the main regions of source-rock deposition and were
formed by the growth of the No. 1 fault (F1) and No. 2 fault (F2),
both normal faults. The subsag-controlling faults extended over



Fig. 2. The organic matter abundance, type, and maturity of source rocks with different hydrocarbon potentials.
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more than 40 km and were active from the beginning of the basin
formation to the Upper Cretaceous-Late Oligocene. The thick dark
shale and structural belt of theWeixinan Sagwere controlled by the
F1 and F2 faults (Zhang et al., 2014; Zhou et al., 2019). The strata
were deposited in a shore-shallow lake delta, fan delta, and
shallow, semi-deep, and deep lacustrine environments during the
Paleogene (Yang et al., 2012; Li et al., 2013). The first and third
members of the Liushagang Formation (LSG-1 and LSG-3) were
dominated by the shore-shallow delta and shallow lacustrine en-
vironments. However, the LSG-2 mainly includes gray and dark
gray shales and oil shale, which were deposited in semi-deep and
deep lacustrine environments (Fig. 1). Oil shale layers mainly
formed at the bottom and top of LSG-2 and occur locally at the
bottom of the LSG-1 and top of LSG-3. The hydrocarbon-rich dark
shale has been identified as the major source rock, providing
abundant petroleum and gas (Li et al., 2008; Huang et al. 2013, 2017,
2017; Zhou et al., 2019; Nytoft et al., 2020).
3. Data and methods

3.1. Data

A total of 143 samples were collected from the LSG-1 to LSG-3
members of wells WZ10-8-1, WZ11-2-1, WZ11-4N-3, WZ5-7-1,
WAN4, and WZ10-7-1 in the Weixinan Sag. The samples consisted
of normal dark shale and oil shale. Fifteen samples were used to
analyze the trace element contents, 33 were used for palynofacies
analysis, and 27 were used for biomarker analysis. Pyrolysis was
carried out on all samples and the total organic carbon (TOC)
contents were determined.
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3.2. Methods

3.2.1. TOC and pyrolysis
The samples were crushed into a 200-mesh powder for TOC

analysis. In total, 200 mg of the powdered samples were added to
HCl at 60 �C, andwashed with distilled water in a crucible. After the
carbonate contents were removed, the washed subsamples were
dried for 24 h at 50 �C. The TOC contents were measured using a
LECO CS-230 analyzer. Pyrolysis was carried out using an OGE-II
instrument, using 60e100 g of each crushed sample. The crushed
samples were placed in a helium atmosphere for heating. The
heating rate was set to 50 �C/min and the temperature was
increased from 300 to 600 �C. TOC content and pyrolysis mea-
surements were performed at the China University of Petroleum
(East China).
3.2.2. Palynofacies analysis
The shale samples were crushed and ground to 20 mm to 2 mm

and embedded in epoxy. The samples were polished and micro-
scopically analyzed under reflected light and fluorescence condi-
tions. The samples for the palynological analysis were treated with
HCl, HF, and ZnBr2 (Tyson, 1993). Quantitative palynological anal-
ysis of the overall kerogen composition was carried out on sieved
unoxidized material. One slide per sample was analyzed under a
microscope and the kerogen was counted using a series of three or
more traverses across the slide until 500macerals were counted for
each sample. The data generated by the kerogen counting pro-
cedure are expressed as relative percentage of the particle abun-
dances (% PAs).



Fig. 3. Differences between palynofacies accumulated in general-quality and excellent-quality source rocks: (a and c) Positive associations between coaly and woody organic matter
in all types of source rocks. (b) Negative associations between liptinite and amorphous organic matter content in all types of source rocks. (d) With an increase in the TOC content,
the sporinite content decreases from general-quality to excellent-quality source rocks. (e and f) General-quality and excellent-quality source rocks displaying similar alginite and
sporopollen contents.
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3.2.3. Trace element measurements using inductively coupled
plasma mass spectrometry (ICP-MS)

The shale samples were crushed into 200-mesh powders in a
clean environment for the trace element analysis. ICP-MS was used
to analyze the trace elements, using a NexION 300D plasma mass
spectrometer. The ambient laboratory temperature was 20 �C and
the relative humidity was maintained at 27%. The relative error of
trace element concentrations ranging from <6 ppm was <10%; at
trace element concentrations of >6 ppm, the relative errorwas<5%.
The test methods and procedures follow the Chinese National
Standard GB/T 14506.30e2010. The trace element concentrations
of the shale were measured at the Analytical Laboratory of the
Beijing Research Institute of Uranium Geology.
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3.2.4. Gas chromatography-mass spectrometry (GC-MS) analysis
For the GC-MS analysis, Soxhlet extraction was used to treat the

powdered samples for 72 h with dichloromethane. Asphaltenes
dissolved in a mixture of hexane-dichloromethane (80:1) were
removed by centrifugation. The hydrocarbons, and nitrogen, sulfur,
and oxygen compounds, were separated using column chroma-
tography (in columns filled with silica gel and Al2O3). The saturates
were eluted with hexane and the aromatics were extracted with
dichloromethane-hexane solution (2:1). The saturated and aro-
matic hydrocarbons were measured using a gas chromatograph
coupled to an Agilent 7890 GC-MS device. The fused silica column
in the GC-MS analyzer was a 30 m DB-5MS (inner diameter
0.25 mm; 0.25 mm film thickness). The oven was heated from 70 to
300 �C at a rate of 3 �C/min; subsequently, the temperature was
maintained for 30 min. The scan range of the mass-to-charge ratio



Fig. 4. Paleowater column and redox conditions of different sedimentary environments forming source rocks. (a) The parameters dU [dU ¼ 2U/(U þ Th/3) (Elderfield and Greaves,
1982)] and V/Gr indicate the depositional environments of different source rocks, ranging from weak oxidation-weak reduction to hypoxic reduction. (b) The high boron content
(Walker, 1963) and Sr/Ba ratio indicate that all source rocks were deposited in fresh to brackish bottomwaters. (c) The Pr/nC17 and Ph/nC18 ratios reflect an increase in the reducing
conditions from general-quality source rock to oil shale. (d) The higher Pr/Ph and Ga/C30 hopane ratios indicate the weak-strong reduction of the bottom water.

Fig. 5. Map of the distribution of basin-controlling faults and sand in the Beibu Gulf Basin.
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Fig. 6. Structural activity rate and sand area controlling the hydrocarbon potential of source rocks. (a) The higher, and positive, structural activity rate of the No. 1 fault (206.3 m/Ma)
is associated with the TOC content of all source rocks. (b) The activity rate of the No. 2 fault (up to 40.3 m/Ma) is positively associated with the source-rock TOC content. (c)
Distribution of the area of sedimentary sand, showing its negative influence on source-rock TOC content.
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was set to 50e650 with a scan time of 0.7 s. Every compound was
analyzed using the NIST library and published mass spectra.
4. Results

4.1. Bulk organic geochemical characteristics

Previous studies suggest that source rocks with TOC content
>0.5 wt% are conducive to the formation of commercial oil-gas
reservoirs (Fuloria, 1967; Katz, 1990; Peters and Cassa, 1994).
Many significant oil deposits are related to excellent-quality source
rock (TOC > 2.0 wt%) based on the analysis of the hydrocarbon
potential and on the oil-source rock correlation (Peters and Cassa,
1994; Gao et al., 2020). Organic-rich shale (TOC content > 5.0 wt
%) is similar to oil shale, as reflected by the high oil yield that occurs
at TOC > 3.5 wt% (Tao et al., 2010; Sun et al., 2013; Liu et al., 2017).
Therefore, according to their potential commercial value and TOC
content, we divided the lacustrine organic-rich shales into general-
quality source rock (0.5 wt% < TOC < 2.0 wt%), excellent-quality
source rock (2.0 wt% < TOC < 5.0 wt%) and oil shale
(TOC > 5.0 wt%). Most of the samples of general-quality source rock
from the study area had a high hydrocarbon generation potential
(S1 þ S2 of 0.66e9.90 mg/g). The excellent-quality source rock was
characterized by higher S1 þ S2 values (5.23e29.44 mg/g), and the
oil shale had the highest hydrocarbon potential (20.40e44.11mg/g)
(Fig. 2a). The hydrogen indexes display an increasing trend from
general-quality source rock, to high-quality source rock, to oil shale
(Fig. 2b). The hydrogen index of general-quality source rock was
96.67e459.64 mg HC/g TOC and its maximum pyrolysis tempera-
ture (Tmax) was 423e456 �C, indicating mainly type II2 kerogen. In
our samples, excellent-quality source rock is reflected by the
presence of type II2-II1 kerogen, with a hydrogen index of
140.99e675.91 mg HC/g TOC and Tmax values of 426e445 �C. In
contrast to the general- and excellent-quality source rock samples,
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the oil shale contained more hydrogen-rich type II1eI kerogen. For
all samples, Tmax values was <460 �C, indicating an immature to
mature stage (Tao et al., 2010).

4.2. Palynofacies analysis

The excellent-quality source rock contained more coaly and
woody organic matter, although several samples of general-quality
source rock had a high proportion of coaly organic matter (>62.5%;
Fig. 3a). Excellent-quality and general-quality source rocks had the
same negative relationships between liptinite and amorphous
organic matter content. Excellent-quality source rock contained
more liptinite (20.7e31.0%) than most of the general-quality source
rocks (14.3e22.7%; Fig. 3b). The relative contents of cutinite and
exinite in excellent-quality source rock were consistent with the
liptinite content (Fig. 3c). Although we measured the TOC content
and palynofacies of three to four samples of excellent-quality
source rock, we were unable to determine the association be-
tween organic matter abundance and palynofacies in either
general-quality or excellent-quality source rock. With the increase
in TOC content, sporinite content increased in general-quality
source rocks, and it tended to be lower in excellent-quality source
rock samples (Fig. 3d). The relative alginite and sporopollen con-
tents of all samples were ca. 20.0e60.0% and 40.0e80.0%, respec-
tively (Fig. 3e and f).

4.3. Paleosalinity and redox conditions

A combination of trace elements and biomarkers can be used to
identify the salinity and redox conditions of depositional environ-
ments (Filby, 1994; Huang et al., 2013; Goldberg and Humayun,
2016; Wood and Hazra, 2017). In our study, oil shale samples had
higher dU ratios (0.73e1.37; mean 0.94), V/Cr ratios (0.91e1.98;
mean 1.32), and boron contents (B wt.%) (123.44e287.06; mean



Fig. 7. Evolution of organic matter abundance, source, and depositional environments based on Liushagang Formation samples from well WZ11-2-1.
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239.14) than excellent- and general-quality source rock. The dU
ratio (0.81e1.23) and V/Gr ratio (0.95e1.54) of excellent-quality
source rocks exceeded those of general-quality source rock
(0.65e0.79 and 0.80e1.39, respectively) (Fig. 4a). The source-rock
types had similar B contents, representative of fresh-saltish water
(Fig. 4b). The ratio of isoprenoids to normal alkane hydrocarbons
(the Pr/n-C17 and Ph/n-C18 ratios) was similar in excellent-quality
source rock (0.43e2.52) and oil shale (0.30e1.82) (Fig. 4c).
General-quality source rock was characterized by a lower Pr/n-C17
to Ph/n-C18 ratio (0.17e1.26). The organic-rich shales showed little
variability in the association between the Pr/Ph and Gammacerane/
C30-hopane ratios, reflecting weak oxidation (Fig. 4d).

4.4. Rate of structural activity and distribution of sand

We analyzed the association between organicmatter abundance
and the structural activity rates and distributions of sedimentary
sand, referring to previous findings (Liu et al. 2013, 2018; Yan et al.,
2020). The spatial distribution of the sand, and the direction of its
long axis, are shown in Fig. 5. The activity rate of the No.1 and No. 2
faults presents a notable positive association with TOC content in
all types of source rocks (Fig. 6a and b). The activity rate of the No.1
fault (maximum rate of 206.23m/Ma) was significantly higher than
that of the No. 2 fault (maximum rate of 40.30 m/Ma). For the oil
shales, the two faults showed similar associations between TOC
contents and structural activity rate (Fig. 6a and b). The highest TOC
value of oil shale was obtained near fault No. 2, at an activity rate of
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29.00 m/Ma, which is lower than that of fault No. 1 (200.00 m/Ma).
Sedimentary sand area and organic matter abundance were nega-
tively associated (Fig. 6c). The oil-shale content decreased rapidly
with increasing sand area.

5. Discussion

5.1. Effects of the paleosalinity and redox conditions on organic
matter preservation

High salinity enhances halocline formation and promotes an
anoxic environment in bottomwater (Baird et al., 1988; Fleet et al.,
1987; Daffonchio et al., 2006). The salinity and redox conditions of
bottom water are positively associated with the organic matter
abundance in bottom sediments (Heckel, 1991; Wignall and
Hallam, 1991; Ding et al., 2016; Zhao et al., 2017). This viewpoint
is supported by our finding that the oil shale deposition occurred in
the bottom water, in brackish and hypoxic environments (Fig. 4a
and b, Fig. 7). However, we found that excellent-quality source
rocks formed under the lower salinity of fresh-to brackish water, in
aweak oxidation-weak reduction environment (Fig. 7), and that the
salinity and redox conditions did not significantly affect organic-
matter accumulation in excellent-quality source rock. Our find-
ings indicate that, as the reduction conditions changed from hyp-
oxic to weak oxidation-weak reduction, the source rock changed
from oil shale to general-quality source rock (Fig. 7), revealing the
effect of the depositional environment.



Fig. 8. Model of the accumulation of organic-rich source rocks in the Liushagang Formation, Beibu Gulf Basin.
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5.2. Effects of higher-plant-derived hydrogen-rich components on
organic matter abundance

Palynofacies analysis can be used to determine the provenance,
types, and abundance of organic matter (Tyson, 1987, 1993, 1993;
Cirilli et al., 2015; Huang et al., 2017). The palynofacies analysis in
this study indicates the mixed input of terrigenous and lacustrine
organic matter. Our evidence suggests that higher-plant-derived
organic matter has a larger influence than other sources of
organic matter on the hydrocarbon generation potential of
excellent-quality source rock and oil shale; this effect was notable
in LSG-2. Coaly and woody organic matter contributed >30% and
>15%, respectively, of the organic matter of excellent-quality source
rock (Fig. 3a). Excellent-quality source rock contained more lip-
tinite and less amorphous organic matter, indicating that it is
hydrocarbon-rich (Figs. 3b and 7). The concentrations of hydrogen-
rich cutinite and exinite, derived from chitin of higher plants, are
higher in excellent-quality than general-quality source rock
(Fig. 3c). The higher-plant-derived hydrogen-rich components
significantly enhanced the hydrocarbon generation potential of
excellent-quality source rock and oil shale of from LSG-2 signifi-
cantly. However, in the excellent-quality source rock of LSG-1,
which was characterized by less coaly and woody organic matter,
the hydrocarbon generation potential was provided by liptinite
(containing some cutinite and sporinite) and mostly by algae. This
indicates that hydrogen-rich liptinite (cutinite and exinite) derived
from higher plants dominated the hydrocarbon generation poten-
tial of excellent-quality source rock and oil shale. Although more
coaly and woody organic matter and some algae were supplied
during general-quality source rock deposition, weak preservation
1018
conditions may explain the lower TOC contents and low S1 þ S2
values of these rocks (Fig. 7).

5.3. Effects of the structural activity and sand on the organic matter
abundance

Together with the settlement of the entire paleolake basement
caused by the No.1 fault, differential subsidence induced by the No.
2 fault developed in Weixinan Sag, forming subsags A, B, and C
(Fig. 5; Xie et al., 2011; Yang et al., 2012; Liu et al., 2014). The subsag
settlement amplitude influences the amount of accommodation
space available for organic-rich sediment deposition, and affects
bottom-water redox conditions, altering organic-rich sediment
preservation (Carroll and Bohacs, 1999, 2001, 2001; Bohacs et al.,
2000). The interaction between the No. 1 and No. 2 faults in the
southern part of the Weixinan Sag (Subsag A) provided sufficient
accommodation space for a thick organic-rich sediment deposit
(Figs. 5 and 6a). Under the background influence of the No. 1 fault,
and the stronger No. 2 fault activity, subsag B formed more avail-
able accommodation space and a deeper water environment than
subsag C, whichwas controlledmostly by theweak southern part of
the No. 2 fault (Figs. 5 and 6c). The distribution of sedimentary sand
was closely associated with the structural activity and paleo-
geomorphology. There were many long and narrow sedimentary
sand deposits on the gentle slopes of subsags B and C (Fig. 5). The
sand significantly affected the distribution of organic-rich fine
sediments. Several short and wide sedimentary sand deposits
occurred on the downthrown side of the No. 1 fault, which has less
influence on the development of organic-rich shales. The presence
of the lacustrine basin delta, accompanied by terrigenous sediment
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and nutrient input, and the higher-plant-derived hydrogen-rich
organic matter, favored the development of organic-rich shales.
This evidence indicates that the high fault-activity rates and the
presence of short deltas (occurring in subsags A and B) were the
primary factors influencing the development of the thick and wide
deposits of excellent-quality source rock and oil shale, which were
abundant in hydrogen-rich components (Martínek et al., 2006;
Ntamak-Nida et al., 2008; Xu et al., 2013, Fig. 5).

5.4. Model of organic matter accumulation controlled by fault
activity and organic matter input

This comprehensive analysis indicates that structural activity,
sedimentary sand distribution, the depositional environment, and
organic matter input play important roles in organic-rich shale
formation. Furthermore, it suggests that, in the Weixinan Sag, high
fault-activity rates, large algal input from the inner lake, and
higher-plant-derived hydrogen-rich components are the primary
factors leading to the development of excellent-quality source rock
and oil shale, with deltaic-sand distribution and the brackish-
hypoxic conditions of the bottom water being secondary factors.
Notably, the favorable area for oil shale and excellent-quality source
rock formation was a settlement area (i.e., subsags A and B), char-
acterized by the fresh-brackish and weakly reducing conditions of
the bottom water, the abundance of hydrogen-rich components
(i.e., alginite, cutinite, exinite, and sporinite), and steep slope sands
(Fig. 8). The uplift and shallow-slope areas were conducive to the
deposition of general-quality source rock under the freshwater and
weakly oxidative conditions, and under the influence of paleoslope
sands (Fig. 8).

6. Conclusions

To estimate source rock and oil shale resources in the Weixinan
depression of the Beibu Gulf Basin, and to reveal the mechanisms of
source rock formation, this study integrated structural activity,
organic matter provenance and type, and preservation conditions.
The findings lead to the following conclusions. Oil shale and
excellent-quality source rock have notably higher hydrocarbon
generation potentials and hydrogen indexes than general-quality
source rock. Terrigenous coaly and woody organic matter are the
primary components of excellent-quality source rock and oil shale.
The higher-plant-derived liptinite content (in the form of cutinite
and exinite) governs the hydrocarbon generation potential of the
excellent-quality source rock and oil shale. Oil shale deposited in a
hypoxic environment with brackish bottomwater provides a better
hydrocarbon resource than excellent-quality source rock that forms
in fresh-brackish and weak oxidation-weak reduction bottom wa-
ter environments. A reduction in salinity and reducing conditions
causes the deposition of general-quality source rock. Depression-
controlling faults control the location and abundance of
excellent-quality source rock and oil shale deposits. The subsag-
controlling local uplift of the palaeogeomorphology and shallow-
slope led to the formation of general-quality to excellent-quality
source rocks. Structural activity influenced the quality and loca-
tion of the source rock deposits. The formation model, which ac-
counts for these controlling factors, can be used to evaluate regional
source rock resources, when there are insufficient drilling cores or
when only seismic and well-logging data are available.
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