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a b s t r a c t

Prediction of primary quality variables in real time with adaptation capability for varying process con-
ditions is a critical task in process industries. This article focuses on the development of non-linear
adaptive soft sensors for prediction of naphtha initial boiling point (IBP) and end boiling point (EBP)
in crude distillation unit. In this work, adaptive inferential sensors with linear and non-linear local
models are reported based on recursive just in time learning (JITL) approach. The different types of local
models designed are locally weighted regression (LWR), multiple linear regression (MLR), partial least
squares regression (PLS) and support vector regression (SVR). In addition to model development, the
effect of relevant dataset size on model prediction accuracy and model computation time is also
investigated. Results show that the JITL model based on support vector regression with iterative single
data algorithm optimization (ISDA) local model (JITL-SVR:ISDA) yielded best prediction accuracy in
reasonable computation time.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Raw naphtha is a mid-stream liquid distillate, fractionated from
atmospheric distillation unit. It is a mixture of alkanes, cycloalkanes
and aromatics with carbon atoms range from 5 to 11 and majorly
used as a solvent for elastomers, diluents for paints and varnishes,
hydrogen production and blended with gasoline to form high oc-
tane fuels (Duchene et al., 2020). For different crude asset (Paraf-
finic, Naphthenic or Aromatic), the boiling range of fractional cut
varies based on composition.

Initial boiling point (IBP) and End boiling point (EBP) are the two
key indicators for naphtha quality which is obtained from labora-
tory analysis with significant time delay. Laboratory analysis based
on EN ISO 3405 and ASTM D86 standards, provides the boiling
range characteristics of different petroleum products under various
conditions at atmospheric pressure. Moreover, online sensors e.g.
gas chromatographs possess measurement delay. The sampling
time varies from fewminutes to several hours (Ujevi�c et al., 2011). It
is mandatory to maintain the quality of refinery products in which
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the properties of naphtha to be continuously monitored and
controlled. Hence, there is a strong need for online monitoring of
naphtha boiling point. In the absence of availability of any hard-
ware sensor for the same, soft sensor can be a viable alternative.

Soft sensors or inferential sensors are data-driven intelligent
software program (model) using statistical and/or artificial intelli-
gence methods capable of translating information frommeasurable
secondary variables (temperature, pressure, flow rates etc.) to
predict primary variables (product quality). Use of inferential sen-
sors helps to take faster and objective oriented decisions during
practical difficulties associated with delay in measurements, un-
reliable measured variables due to drifts, fouling or accidental
damage of process analyzers and manual errors in laboratory
analysis.

A list of various soft sensors reported in literature for predicting
naphtha quality parameters is presented in Table 1.

Literature survey reveals that though quite a few soft sensors for
naphtha property estimation have been reported, most of these
reported soft sensors are based on steady state analysis. Modern
petroleum refineries are highly complex and also from time to time
there will be changes in operating conditions and feedstock quality.
Therefore, to maintain prediction accuracy, the soft sensor model
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Table 1
Literature review of soft sensors for estimation of naphtha property.

Author, Year Output Methods used

Dam and Saraf (2006) IBP and EBP of heavy naphtha Genetic Algorithm-Artificial Neural Networks
Macias-Hernandes et al.

(2007)
Naphtha 95% cut point Extended evolving Takagi-Sugeno fuzzy model

Yan (2008) Naphtha 25% cut point Modified nonlinear generalized ridge regression
Yan (2010) Naphtha dry point Hybrid artificial neural networks
Ujevi�c et al (2011) IBP and EBP of heavy naphtha Multiple linear regression, Multilayer perceptron (MLP) and Radial basis function (RBF) neural

networks
Wang et al. (2013) Naphtha dry point Backpropagation learning technique combining correlation pruning algorithm with multiple linear

regression model
Shang et al. (2015) Naphtha 100% cut point Dynamic partial least square regression
Torgashov et al. (2018) Desired cut 2 (mixture of naphtha and

gasoline)
Static linear regression and dynamic finite impulse response model
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should be designed so as to adapt with the changing process con-
ditions. Unfortunately, adaptive soft sensors for naphtha boiling
point prediction is rarely reported. Therefore, design of soft sensor
for naphtha property predictionwith adaptation capability will be a
significant step towards effective implementation of intelligent and
smart manufacturing concept in petroleum refinery.

The commonly used adaptive techniques are moving window
(Kaneko and Funatsu, 2015; Liu et al., 2018), recursive principal
component analysis and partial least squares regression (Poerio
and Brown, 2018), just-in-time learning (Liu, 2017) and super-
vised ensemble (Shao and Tian, 2017) methods. Recently, Just-in-
Time Learning method has gained significant attention among re-
searchers due to its better prediction and implementation capa-
bility as compared to other methods. There has been significant
progress in the past decade for JITL based adaptive soft sensor
development in various chemical processes such as van de Vusse
continuous stirred tank reactor (Cheng and Sen (2004); 2005),
Tennessee Eastman process (Ge and Song, 2010), Batch Fermenta-
tion process (Liu et al., 2012), Debutanizer Column (Yuan et al.,
2014) and Sulphur Recover Unit (Shao et al., 2015).

In this work, adaptive soft sensor based on JITL approach was
designed to predict the initial and end boiling points (IBP & EBP) of
heavy naphtha fractions from splitter bottom of CDU. In the pro-
posed algorithm, a similarity index is initially computed based on
the Euclidean distance between query data sample and each sam-
ple of the database. A relevant database is formed by extracting a
fixed number of samples from the database which are most similar
to the query data. Subsequently, the relevant data set is used to
develop the predictive model and then the output is computed for a
particular query data. After computation of the output, the query
data is included and the most dissimilar object is removed from the
database. This activity is repeated for each incoming query sample.
In this way the database is recursively updated with every query
sample.

The contribution of this article is three fold. First, to the best of
authors' knowledge, adaptive soft sensing for prediction of naphtha
boiling point is rarely reported in literature which is the main
contribution of this work. Development of adaptive soft sensor
based on JITL for prediction of naphtha boiling point in CDU finds
better relevance in monitoring and implementation purpose in
modern refineries.

Second, there is scope of exploring several local modeling
techniques in JITL framework with better generalization and esti-
mation capability. Different types of linear and non-linear local
models were developed in this work in order to get the local model
with best prediction accuracy. The linear models are: multiple
linear regression (MLR), locally weighted regression (LWR) partial
least square (PLS) regression models and the nonlinear model
include support vector regression (SVR) model.
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Determination of optimum relevant dataset size is an important
design issue in adaptive soft sensor modeling in JITL framework.
Unfortunately, there are few answers available in the literature.
During development of the non-linearmodels, the effect of relevant
dataset size and model hyper-parameter on prediction accuracy is
investigated so as to choose the optimum model hyper-parameter.
Rigorous grid search method is adopted for optimal relevant
dataset size determination. Local models were developed from
relevant dataset with varying sizes and the effect of size on pre-
diction accuracy as well as on computation time was investigated
and the optimum size of relevant data set was also determined.
Performance of best model is further validated by conducting 4-
plot analysis technique.

The article is organized as follows. Section 2 introduces the
readers to the process of crude distillation in refineries, the pro-
duction of naphtha and the importance of real time boiling point
estimation for naphtha. The methodology adopted in this work for
just-in-time based adaptive soft sensor development is presented
in section 3. All results obtained during different model building
steps are presented and critically analyzed in section 4. Finally,
concluding remarks are presented in section 5.
2. Process description

Petroleum (also known as crude oil), a fossil fuel with complex
hydrocarbon forms a chief source of energy. The steady increase in
per-capita consumption of conventional petroleum and petroleum
related products with simultaneous drop in exploration of oil wells
shows an alarming trend towards major energy crisis. It is indis-
pensable for every industries as well as individual, to safeguard the
energy resources for the future generation. This warrants efficient
and optimized process control for reducing the wastage of energy
resources. The other agenda for process control is to avoid process
variations and customer complaint of product. Process models can
be potentially useful to design effective controllers. Petroleum
undergoes three different stages (upstream, mid-stream and
downstream) of process before approaching the end usage of
consumers. The upstream process includes dewatering, desalting
and desulphurization unit. The mid-stream stage comprises multi-
component fractionation, hydro cracking, reforming and hydro
treating. Finally, the downstream process includes petrochemical
complex such as formation of fertilizers, polymers, dyes and pig-
ments. The process described here, forms as small portion of mid-
stream crude fractionation process, which consists of atmospheric
distillation column and stripping unit with a preheater at the bot-
tom section and condensing system at the top overhead section.
The crude distillation unit (CDU) is the heart of the refinery. It is
very essential to monitor and control the quality of products in
CDU, to meet the product specification and be customer compliant



Table 2
Input-output process variables used for modeling.

Inputs Outputs

Column top pressure Initial Boiling Point & End Boiling Point
Splitter top pressure
Splitter top temperature
Reflux rate
Splitter inlet temperature
Splitter bottom temperature
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with reduced wastages and reasonable profit.
A schematic process flow diagram for CDU is presented in Fig. 1.

The unstabilized naphtha (C3eC9) is subjected to stabilizer unit,
separates LPG, liquefied petroleum gas (C3, C4) in the top and sta-
bilized naphtha at the bottom. The stabilized naphtha (C4eC9) is
then fed to splitter unit which then further separates light naphtha
(C5 < 70 �C) and heavy naphtha (C5 > 700e185 �C). The temperature
reading measured for the condensate first drop at the outlet of
condenser is initial boiling point (IBP) and the upper temperature
limit observed during the test is found as end boiling point (EBP).

It is noted that the end boiling point of splitter bottom fraction
should not exceed 204 �C because the rate of deactivation of plat-
inum catalyst increases while processing through catalytic
reforming unit. Also, the initial boiling point of splitter bottom
fraction should be maintained between 750-100 �C, so that it pre-
vents the formation of precursor for undesirable benzene above
this range in catalytic reforming unit. Therefore real time estima-
tion of these parameters will be of great assistance in maintenance
of naphtha quality. The estimation of naphtha boiling point
(product quality) with marginable savings is the basis for this soft
sensor development. For model development, the various input
variables considered are: atmospheric column top temperature,
splitter top temperature, splitter bottom temperature, splitter top
pressure, reflux flow rate and splitter inlet temperature. The input
variables were selected based on sensitivity analysis. Sensitivity
analysis provides the information about most influential variables
over response. The criterion for selection of suitable variable for
model development is based on the sensitivity ratio (Rank order
higher than one). Interested readers can refer Ujevic et al. (2011) for
further details. The variables of interest in this work are initial
boiling point and end boiling point of naphtha. These are quality
parameters which are determined by laboratory analysis. There-
fore, the sampling time varies from 1 h to several hours in different
refineries. The different input and output variables considered in
this work are presented in Table 2.
3. Methodology

The total datasets of 210 samples for IBP and 209 samples for
EBP each with 6 inputs and 1 output were considered for this work
(Ujevi�c et al., 2011).
Fig. 1. Schematic process flow diagram of Crude Distillation Unit (Stabilizer and
Stripper).
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In offline global modeling, the model parameters developed
from the particular training dataset is fixed. Once the online pro-
cess data were measured, the output is delivered when it un-
dergoes the sequence of prediction scheme. Here, the model
parameters for the developed model were not changed for the
particular process data. Because of this, the residual error (pre-
dicted e observed) for the predicted output seems very high.
However, in just-in-time based local modeling framework, the
online measured process data sample is compared with the stored
data in database based on distancemethod. The nearest neighbor of
the current process data are selected (relevant dataset) and the
model is developed with the help of selected relevant dataset
(RDS). In this way, the model parameters are updated for each
incoming set of input data.

The database samples are selected in such a way that it must
captures wide range of relevant process information. The regres-
sion surface can be created by using local regression equation based
on linear and non-linear functions. The model for output is devel-
oped by using the ‘n’ number of closest neighborhood for incoming
query. The neighborhood is selected based on distance weighting
procedure. Higher weights are assigned to data points which are
close to the query. Consequently, the farther ones acquire lower
weight. Then, the weighted least squares were used to build a local
function. Herewith, the effect of outlier in the incoming measure-
ments from the real plant data can be minimized by using
weighting method (Park and Han, 2000).

When the estimation of output is requested for a query data
received from the process stream, the search for closest neighbor-
hood point for the former is initiated in the database. After the
search is over, a vector of closest neighborhood (for the incoming
query point) is created by sorting each object of the database in
ascending order from the query data, based on distance. The dis-
tance between the query data and an object of database may be
computed based on Euclidean, Mahalanobis or Gaussian Mixture
Model (Fan et al., 2014), combined distance and angle (Cheng and
Chiu, 2004), combining Q statistic and Hotelling's T2 from PCA
(Fujiwara et al., 2009) and combining measure distance from sup-
port vector data decomposition and Hotelling's T2 in Non-Gaussian
JITL (Zeng et al., 2011).

After the computation of distance, a similarity index vector is
created. The initial step in getting similarity index involves
computation of weighting function corresponding to each distance
according to Eqn. (1) given below.

wi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
�
d
�
xq; xi

�
h

�s
[1]

wi e weighting function; d e distance between query sample
and each sample of the database; K e Kernel function; h e Band-
width of kernel function.

The commonly used kernel functions for weighting purpose are
linear, Gaussian (or radial basis function) and polynomial. Among
these, the Gaussian function maps non-linear complex features
effectively so as to minimize the residual error due to under-fitting
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problems by bias addition(Wang et al., 2016).

KðdÞ¼ e�d2
[2]

It may be noted that, when the distance from the query point to
neighborhood point decreases, the weight function, wi increases.
Based on this, the similarity index (Si) was computed between
query data and its neighborhood in the database (Cheng and Chiu,
2004).
Fig. 2. Flow chart of the Just in Time Learning Technique adopted in this work.
3.1. Similarity index (Si) calculation

The similarity index is calculated by finding the distance be-
tween query data and its closest neighborhood in the database by
means of Euclidean distance (Ge and Song, 2010).

Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�d2ðxq;xiÞ

q
[3]

Where, d2ðxq; xiÞ ¼ ðxq � xiÞT ðxq �xiÞ ; i ¼ 1, 2, …n.
The similarity index was sorted down in descending order and

converted into a diagonal matrix (by multiplying with identity
matrix whose size is analogous to similarity indexmatrix). Then the
dominant diagonal matrix (weighting matrix W) is multiplied with
the database samples for model development. Then the input data
matrix is subjected to singular value decomposition with query
data point to get the model parameter (regression coefficient)
values. In this work, three linear (MLR, LWR and PLS) and two non-
linear (SVR) local models were developed. Based on the type of
local model, the just-in-time based adaptive soft sensors will
hereafter be named as JITL-MLR, JITL-LWR, JITL-PLS and JITL-SVR.
Regression coefficients for linear local models are computed ac-
cording to the equations given below.

Multiple linear regression:

b¼
�
fT W f

��1
fT W y [4]

Locally weighted regression:

b¼
�
ZTZ

��1
ZTv [5]

Partial least squares regression:

b¼Wpls

�
PTLWpls

��1
qTL [6]

Where, f and y were relevant dataset and its corresponding
output data matrices, W e Weighting Matrix; b e Model param-
eter; Z ¼W f; y ¼W y;Wpls eWeight matrix (for PLS model); PLe
Loading matrix of input variables; qL e Loading vector for output
variables.

The final Just-in-Time learning model equation for the predic-
tion of Initial and End boiling point is found to be the predicted
output (yq) obtained directly by multiplying the query data point
with regression coefficient value.

yq ¼ b xq [7]

It may be noted that during model development, variables with
higher magnitudes may dominate over variables with lower mag-
nitudes. In order to avoid this undesirable influence, all variable
values were normalized using z-score normalization technique
according to the equation given below:

S¼ �
xi � x

� 	
sx [8]
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sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�

xi � x
�

n� 1

s
[9]

S e Scaled data; xi � Sample; x� Sample mean; sx �
Sample standard deviation; n e Total number of samples.

The local model is discarded after prediction of output for a
particular query sample and for the next query sample a new local
model is constructed.

In JITL technique, the database may be fixed or may be contin-
uously updated. In most of the reported techniques the database is
continuously updated by including the query sample without any
removal of data from database. This leads to an increase in database
size with time and consequently, the computation time for each
sample will increase with time (this is because, initially, distance of
the query sample from each sample of the database has to be
computed). For updation of database, several procedures were re-
ported in literature. It is very important that the data having good
information must be included and those with poor information
must be excluded from the database (Kaneko and Funatsu, 2014).
Several updation techniques were used by researchers in the past:
absolute estimation error (Kansha and Chiu, 2009), data moni-
toring index (Kaneko and Funatsu, 2014) and hybrid similarity in-
dex (Jin et al., 2014) was proposed to remove the most similar
samples using new sample from the database. In this work, we have
followed a technique of database updation where, the latest query
data is included in the database and one sample already present in
the database and which has least similarity with query data is
removed. In this manner, the database size is fixed while ensuring
continuous updation of the database recursively.

Fig. 2 explains the JITL algorithm adopted in this work for
adaptive soft sensor design. It may further be stated that the data
used in this work is free from noise and outliers. However, in cases
where there is possibility of presence of outliers, JITL finds a local
region from the database to incoming query data and regression is
applied around the region of interest. Hence, thereby the local
weighting concept helps to lessen the noisy non-local region data
for model development (Wang et al., 2016). Further, prior to
application of JITL algorithm some univariate or multivariate outlier
detection algorithms (data preprocessing) can be applied on the
incoming sample vector (with some predefined threshold value) to
determine whether the incoming set of measurements contains
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any outlying value or not by combining data preprocessing algo-
rithm (Chen et al., 2014) prior to JITL application.
Fig. 3 (a). Prediction accuracy (CC) Vs relevant dataset size for naphtha initial boiling
point (Linear local models).

Fig. 3 (b). Prediction accuracy (CC) Vs relevant dataset size for naphtha end boiling
point (Linear local models).
4. Results and discussion

The prediction efficiency of all models was evaluated by
computing the statistical parameters of mean absolute error (MAE)
and correlation coefficient, CC (or Pearson coefficient, R). The CC
provides the quantification of dependency of one variable with the
other variable for a multivariate data distribution while, MAE gives
the measure of respective deviation of predicted output from
observed data in the form of average of error in absolute value
(Rogina et al., 2011; Yuge et al., 2018). The mean absolute error and
correlation coefficient is given by

MAE¼1
n

Xn
_i¼1



y� by

 [10]

CC¼
S
�
y� y

��by � by�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP �
y� y

�2q P�by � by�2 [11]

y is the actual observed value, by represents the model predicted

value, y is the observed mean, by is the predicted mean and n is the
total number of samples taken for prediction of output. The higher
the CC value close to unity and the lower the MAE value close to
zero, the better is the predictive performance of the developed
model.

The models for IBP and EBP are developed separately. 59 objects
(58 objects for EBP) were extracted from the available 210 objects
(209 objects for EBP soft sensor) using Kennard-Stone algorithm
(Kennard and Stone, 1969). These 59 objects are used as query data.
The remaining 151 objects are used as database. When a query data
is received by the JITL algorithm, distance based similarity values
are computed between the query data and each of the 151 objects
of the database. Subsequently, a certain number of samples which
are closest to the query data are taken as relevant dataset. The local
JITL models were developed from this relevant dataset. This is for
the reason that, the samples of relevant dataset are most similar to
the query data. The developed model is used to predict the output
for the query data. Subsequently, the query data is included in the
database and the most dissimilar object (based on the previously
computed similarity index) is discarded from the database. The
program for just-in-time (JIT) architecture and simulation of all the
models were developed on MATLAB® (R2018b).
4.1. Determination of optimum relevant dataset size for linear local
model

An open issue in JITL based approach is to determine the opti-
mum size of relevant dataset. In order to determine the optimum
size, local linear models (MLR, LWR, PLS) were developed based on
different number of relevant dataset size ranging from 10 to 150
and the prediction results for 59 objects (58 for EBP) of query data
were determined. The dependency of model prediction accuracy on
the relevant dataset size is shown in Fig. 3.

In the above Figs. PLS (3) and PLS (4) corresponds to the PLS local
models with three and four latent variables respectively (It may be
recalled that the number of actual input variables is six). A common
perception is: themore is the size of the data used for modeling, the
better will be the model performance. This may be true in steady
state soft sensor design where one model developed from a set of
offline data is subsequently used for predicting outputs for all un-
known inputs. However, this concept may not be always true in
1234
case of adaptive soft sensor design using local modeling concept
where a model is built to predict output for just one set of input. A
deep in performance around RDS 30 in Fig. 3(b) indicates existence
of some optimum RDS size.

Both Fig. 3 (a) and 3 (b) shows that there is negligible
improvement in prediction accuracy beyond a dataset size of 50.
Therefore, for linear models, the optimum relevant dataset size was
decided to be 50 (k ¼ 50; refer algorithm in Fig. 2). Further, for any
dataset size, performance of JITL-LWR is found to be better than
that of JITL-MLR, JITL-PLS (3) and JITL-PLS (4). Also, performance
values for IBP prediction are better than that for EBP prediction.

4.2. Design of non-linear local models

In addition to the linear local models (MLR, LWR and PLS), two
non-linear local model was also developed in this work: support
vector regression with sequential minimal optimization (SMO) and
support vector regression with iterative single data algorithm
optimization (ISDA) model. These adaptive soft sensors are
mentioned as: JITL-SVR:SMO and JITL-SVR:ISDA.

Support vector regression (SVR) models have become attractive
alternatives to neural networkmodels for non linear processes. SVR
model develops the relationship by projecting the predictor vari-
ables into the high dimensional space for solving convex quadratic
optimization problems (Cortes and Vapnik, 1995; Qian et al., 2018;
Vapnik, 1999; Zhong et al., 2010). In SVR, two optimization ap-
proaches sequential minimal optimization (SMO) algorithm and
iterative single data algorithm (ISDA) were used to develop the
model. SMO (Platt, 1999) is based on the rule of second-order
iterative selection algorithm uses two lagrangian multipliers as a
reference to solve optimization problem faster than the existing
quadratic programming in SVR. ISDA (Kecman et al., 2005) works
by classical Gauss-Seidel iterative algorithm updating the single
Lagrangian multiplier every-time for a huge datasets to converge



Fig. 4 (b). CC Vs loss function (ε) for EBP (RDS-50) [for SVR local model].
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rapidly. Here, the selection of optimum value of loss function (ε) for
modeling applications is very important to select the best per-
forming models with reasonable prediction (Shokri et al., 2015; Yan
et al., 2004). There is no unanimous formula for determination of
hyperparameter values (loss function in this case). There is a range
of methods starting from grid search to different evolutionary
techniques (such as genetic algorithm, ant colony optimization,
particle swarm optimization etc.) used by researchers to determine
the hyperparameter values resulting in best prediction accuracy.
One such interesting workwas observed in Shokri et al. (2014), who
proposed a soft optimization technique based on hybrid meta-
heuristic approach, which preset the hyper-parameter settings in
advance before model development. Grid search method is
rigorous and cumbersome but yields reasonably better optimum
values like other proposed techniques in literature because the
model is tested over a wide possible range of values (Pani and
Mohanta, 2014). Therefore in this work the grid search method is
adopted to determine the optimum loss function value.

For both JITL-SVR:SMO and JITL-SVR:ISDA, the prediction per-
formance was tested for ε value ranging from 0.001 to 1.5 for both
IBP and EBP. The precise results are presented in Fig. 4.

Other results showing effects of ε and relevant dataset size (RDS)
on mean absolute error (MAE) are provided in the supplementary
file. At 50 RDS, the mean error reached minimum value and started
to climb higher by increasing the epsilon (ε) value.

The CC value starts decreasing while increasing the loss function
value after 0.05 for IBP prediction. For EBP prediction, model per-
formances start to degrade beyond an ε value of 0.9. Therefore, The
optimum ε value was found to be 0.05 for IBP and 0.9 for EBP in JITL
(Refer Fig. 4).

4.3. Effect of relevant dataset (RDS) size for non-linear local model

It may be noted that though, the results for non-linear local
model based soft sensor are only presented for RDS size of 50,
models with different RDS size were developed and tested (Inter-
ested readers can refer the supplementary file for details). Usually,
model accuracy improves when the dataset size used for modeling
increases. In this work, the local models are developed from the
relevant dataset. Performance of linear local models in fact im-
proves as the relevant dataset size increases and remained constant
after some optimum size of 50 (Refer Fig. 3a and b). Irrespective of
linear or non-linear local model, it was observed that at low size of
RDS, the accuracy improves with increase in size of RDS. However,
at higher values of RDS size, the accuracy shows negligible
improvement with increase in RDS size. Low RDS size results in
under fitting (low accuracy) and higher RDS size leads to increase in
computation load. Further, the best result of JITL-SVR model was
found to be better than JITL-linear (MLR, LWR and PLS) models.

For real applications, it will be difficult to select different
Fig. 4 (a). CC Vs loss function (ε) for IBP (RDS-50) [for SVR local model].
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relevant dataset size and/or constituent model parametric values
along with computation complications. For better model general-
ization, we propose an optimum relevant dataset size of 50 at
which all models have maximum or close to maximum accuracy.

4.4. Effect of relevant dataset size (RDS) on model computation
time for linear local model

In static soft sensors, the model parameters are determined
during offline model development and the parameters remain
same during their online use. However, in adaptive soft sensors, the
model parameters are computed for each query data object.
Therefore, for a static soft sensor, the model computation time in-
volves the time for simulation of the already developed model
when an input data set is supplied to the soft sensor. In adaptive
soft sensors, computation time includes time required for model
parameter computation and model simulation for each incoming
input vector. Further, in case of JITL based adaptive soft sensor, the
computation time involves computation of similarity of the query
sample with each sample of the dataset, preparation of the relevant
dataset, development of the local model (model identification) and
finally simulation of the developed model with the query sample.
Unless properly designed, a model possessing good accuracy may
not be useful due to computational complexity. Therefore, an
important issue for adaptive soft sensors is the model computation
time. The computation time was determined using MATLAB®
‘timeit’ function. Here, the computation time for every model was
found in triplicates and average of those triplicates was used for
comparisons to minimize the computational error.

The variations in computation time are between 0.008 and
0.0087 s. If we consider three places after decimal, then the effect of
dataset size on computation time is insignificant. The effect is in the
order of 10�4 s. This computation time is acceptable for online
implementation of the algorithm because the online sensors
monitoring the secondary variables are expected to have sampling
time higher than this computation time. Hence it can be concluded
that a relevant dataset size of 50 can be used in subsequent non-
linear model development.

4.5. Computation time for non-linear local models

Average computation time for the JITL soft sensors based on
non-linear local models (JITL-SVR:SMO and JITL-SVR:ISDA) are
determined for a relevant dataset size of 50. The average compu-
tation time required for the JITL-SVR:SMO model varies from
0.0125 to 0.0148 s and 0.0124e0.0153 s in JITL-SVR:ISDAmodel. The
average computation time required to predict the required output
for non-linear local model based JITL soft sensor is higher than that
based on linear local models (This may be due to more complexity
involved in case of non-linear models).



Table 3
JITL based adaptive soft sensor performance for naphtha IBP prediction for optimum relevant dataset size.

Model type Optimum relevant dataset size Correlation coefficient (CC) Mean Absolute Error (MAE), in 0C

JITL-LWR 50 0.86 2.45
JITL-MLR 50 0.86 2.44
JITL-PLS (3) 50 0.85 2.70
JITL-PLS (4) 50 0.85 2.55
JITL-SVR-ISDA 50 (ε ¼ 0.05) 0.86 2.58
JITL-SVR-SMO 50 (ε ¼ 0.05) 0.85 2.68

Table 4
JITL based adaptive soft sensor performance for naphtha EBP prediction for optimum relevant dataset size.

Model type Optimum relevant dataset size Correlation coefficient (CC) Mean Absolute Error (MAE), in 0C

JITL-LWR 50 0.61 3.44
JITL-MLR 50 0.66 3.38
JITL-PLS (3) 50 0.62 3.47
JITL-PLS (4) 50 0.60 3.45
JITL-SVR-ISDA 50 (ε ¼ 0.9) 0.73 2.87
JITL-SVR-SMO 50 (ε ¼ 0.9) 0.70 3.15
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In Tables 3 and 4, the prediction results by the optimum models
(relevant dataset size ¼ 50) of different types are presented for
naphtha IBP and EBP respectively.

Figs. 5 and 6 show the prediction results by the models
mentioned in Tables 3 and 4

The average computation time in case of any model for both IBP
and EBP are very close to each other (as can be noticed in Fig. 7, the
overlapping of two lines). Further, computation time for non-linear
models is higher than that for linear local models. This may be due
to the fact that higher degree of complexity is involved in devel-
opment of the non-linear local model at each sampling instance.
Though, the computation time was slightly higher, it is still well
below the hardware sensor sampling rate which makes it suitable
for online implementation. Therefore, the choice of whether to go
for linear or non-linear local model is left to the user to decide. Both
Fig. 5. Actual and predicted values of Naphtha initial boiling point (IBP

Fig. 6. Actual and predicted values of Naphtha end boiling point (EBP) by JITL based adaptive
time for the different models at their optimum parameters.
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models are computationally acceptable. Both models almost give
the same performance for IBP as well. However, in addition to IBP, if
we also want reasonable accuracy for EBP prediction, then non-
linear local model is to be preferred. Considering model accuracy
and model computation time as the criteria for model selection it
can be concluded that JITL-SVR:ISDA has the best prediction accu-
racy for both naphtha IBP and EBP prediction.
4.6. Further model validation of JITL-SVR:ISDA

The residual analysis of JITL-SVR:ISDA adaptive soft sensor is
carried out by four-plot analysis technique (Fortuna et al., 2007;
Pani and Mohanta, 2016). The results are shown in the following
Fig. 8.
) by JITL based adaptive soft sensors using different local models.

soft sensors using different local models. Further, in Fig. 7, we present the computation



Fig. 7. Average computation time for JITL based adaptive soft sensors using different
local models.
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Four plots are used for residual analysis to identify the distri-
bution of penalty for predicted variables over the observed output.
It includes run sequence plot, lag plot, histogram and normal
probability plot. Run sequence plot provides the information about
residual trend around the mean while propagating through the
time ordered observations. The trendmay be increasing, decreasing
or constant variance trend. The ideal trend observed to be constant
variance trend, as the error variance seems no process drift as
moving though the large number of time varying observations. Lag
plot shows the graph of sequence of observations against the one
time lagged sequence of observations. This gives the information
about the spread of error variance around the mean. This is also
observed to be random in nature and therefore not dependent on
time. Histogram represents, how the error variance is normally
distributed around the mean. The assumption of normal distribu-
tion is found to be true, when the histogram shape is symmetric
and bell shaped. The normal probability plot shows the distribution
of ordered error variance against the probability percentile is
Fig. 8 (a). JITL-SVR:ISDA model v
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normally distributed. The linear graph indicates that the residual is
normally distributed.

The prediction performance and computation time of non-
linear models at different RDS sizes are provided as supplemen-
tary files for interested readers.
5. Conclusion

Initial and end boiling points of naphtha are important process
parameters which need to be maintained at specified values for
ensuring better process performance in petroleum refineries.
Hence, adaptive soft sensors have huge scope of relevance to ensure
quality of naphtha in fractionation process. In this work, just in time
learning concept is applied to develop adaptive soft sensors for
online monitoring of naphtha IBP and EBP. During the course of
model development various aspects of JITL modeling are investi-
gated. These include effect of relevant dataset size on model per-
formance and model computation time. Linear and non-linear local
models were designed. The best correlation coefficient values by
any linear model are 0.86 for IBP and 0.66 for EBP (JITL-MLR) with a
model computation time of 0.0083 s. The correlation coefficient
values for JITL-SVR:ISDA are 0.86 for IBP and 0.73 for EBP with a
model computation time of 0.012 s. The improvement in IBP pre-
diction was insignificant. However, there is an improvement of
more than 10% for EBP prediction in case of the proposed non-
linear JITL model. After performance analysis of various models, it
was observed that support vector regression model produced
better prediction accuracy than multiple linear regression, partial
least squares regression and locally weighted regression models.
The performancewas further validated using residual errors by four
plot analysis. The criteria chosen for good modeling are, better
generalization capability and low computational time. An error
margin of about ±3 �C temperature is achieved by the JITL-SVR
model for prediction of IBP and EBP. Reasonably low computation
alidation for IBP prediction.



Fig. 8 (b). JITL-SVR:ISDA model validation for EBP prediction.
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time of model simulation indicates that the proposed JITL-SVR
model can be implemented online as adaptive soft sensor for
continuous estimation of naphtha quality.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.petsci.2021.07.001.
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