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a b s t r a c t

Accurate wave propagation simulation in anisotropic media is important for forward modeling, migra-
tion and inversion. In this study, the weighted Runge-Kutta discontinuous Galerkin (RKDG) method is
extended to solve the elastic wave equations in 2D transversely isotropic media. The spatial discretiza-
tion is based on the numerical flux discontinuous Galerkin scheme. An explicit weighted two-step
iterative Runge-Kutta method is used as time-stepping algorithm. The weighted RKDG method has
good flexibility and applicability of dealing with undulating geometries and boundary conditions. To
verify the correctness and effectiveness of this method, several numerical examples are presented for
elastic wave propagations in vertical transversely isotropic and tilted transversely isotropic media. The
results show that the weighted RKDG method is promising for solving wave propagation problems in
complex anisotropic medium.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Transversely isotropic (TI) medium is an effective elastic
approximation to describe the cracks and thin interbeds widely
existing in underground rocks. In actual seismic exploration, most
of the sedimentary rocks are TI medium. Thomsen (1986) system-
atically analyzed the group and phase velocities in TI media, and
introduced the Thomsen coefficients to represent the anisotropic
characteristics of the medium. The TI medium has a symmetry axis,
and the seismic wave propagation in the plane perpendicular to the
symmetry axis has isotropic behaviors. According to the position of
the symmetry axis, the TImedia fall into three categories: vertical TI
(VTI), horizontal TI (HTI) and tilted TI (TTI). The VTI media are
mainly composed of periodic thin layer, the HTI media are generally
oriented cracks or fissures arranged in parallel, and the TTI media
are generally inclined cracks.

Studying the seismic wave propagation in anisotropic media is
of great significance for understanding the propagation laws of
seismic waves and interpreting seismic data (Carcione, 2007; Wu
et al., 2010; Fletcher et al., 2009). In actual seismic exploration,
).

y Elsevier B.V. on behalf of KeAi Co
due to the complexity and inhomogeneity of the underground
medium, there are few models that we can obtain analytical solu-
tions for the propagation of seismic wavefields. Therefore, it is
extremely important to study the numerical solutions. When
numerically solving the wave equation, due to different mathe-
matical theories and discretization methods based on the dis-
cretization process, many numerical calculation methods have
been suggested including the finite-difference method (FDM) (e.g.,
Igel et al., 1995; Hestholm,1999; Moczo et al., 2000; Gao and Zhang,
2006; Yang et al., 2007; Du et al., 2009; Liu and Sen, 2009; Sun et al.,
2016; Wang et al., 2016; Wang et al., 2019; Sethi et al., 2022), the
finite element method (FEM) (Carcione et al., 2011; Moczo et al.,
2011), the pseudo-spectral method (PSM) (Nielsen et al., 1994),
and the spectral element method (SEM) (e.g., Komatitsch et al.,
1999; Xu et al., 2021).

Topographies are often encountered in practical scenarios. Some
are irregular regional boundaries such as undulating surface, and
some are special structures such as fractures and small holes which
are commonly found in unconventional oil and gas exploration. In
view of these situations, the conventional FDM needs to adopt the
staircase method. But the staircase method is complicated to pro-
gram, and it tends to generate false diffraction waves at the region
boundary. However, if we use the traditional FEM, although the
mesh can be divided flexibly, FEM requires a large amount of
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Fig. 1. Illustration of the symmetry axis and rotation angles, where q and 4 denote the
polarization and azimuth angles, respectively.
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calculation and is not easy to parallelize. Many geophysicists have
proposed a series of effective methods to tame the topographic
surfaces (e.g., Hestholm and Ruud, 2002; Gao and Zhang, 2006; Lan
and Zhang, 2011; Zhang et al., 2012; Shragge, 2014; Sun et al., 2016;
Rao and Wang, 2019). Especially, Gao and Zhang (2006) solved the
3D elastic wave propagation problems in anisotropic media using a
parallel grid method, which uses a mixedmesh of tetrahedrons and
parallelepipedons to approximate arbitrary 3D topographies. Lan
and Zhang (2011) suggested a finite-difference approach to solve
wave propagations in 3D heterogeneous TI media. They implement
the surface topography by a mapping between rectangular grids
and curved grids, and they verified the efficiency of this method by
performing efficient tests. Zhang et al. (2012) proposed a
collocated-grid method on curvilinear grids for elastic wave
modelling, afterwards, Sun et al. (2016, 2018) extended this method
to simulate 2D and 3D elastic wavefields in general anisotropic
media, respectively. Rao and Wang (2019) carried out detailed an-
alyses on the numerical stability and dispersion for the pseudo-
acoustic wave equation in TTI medium. To deal with the surface
or interface topographies, they mapped the nonrectangular quad-
rilateral grids to the quadrangle grids in Cartesian coordinates, and
then implemented the simulations using FDM.

The discontinuous Galerkin (DG) method is a popular method
that has been increasingly applied in the past decade. A series of DG
methods have been developed and widely used in many fields (e.g.,
Reed and Hill, 1973; Cockburn and Shu, 1989; Hu et al., 1999;
Cockburn and Shu, 2001; Hesthaven andWarburton, 2007). The DG
method has also found many applications in geosciences (e.g.,
K€aser and Dumbser, 2006; Patra et al., 2006; de la Puente et al.,
2007; Levy et al., 2007; Rivi�ere, 2008; de Basabe et al., 2016;
Modave et al., 2016; Yang et al., 2016; Clare et al., 2020; He et al.,
2019a, 2019b, 2020a, 2020b; Qiu et al., 2020; Huang et al., 2022).
The DGmethod hasmany positive features such as the flexibility on
dealing with complex structure and boundary conditions; in
particular, it is convenient to handle free surface boundary condi-
tions. Moreover, the solutions on each element are independent,
and they are connected by numerical fluxes at element boundaries,
leading to good parallelism. We should point out that, the SEM and
DG methods have many similarities, for examples, they are both
variants of FEM, they can handle complex boundaries and have
high accuracy, and the mass matrices can be diagonal or block di-
agonal. But SEM usually uses quadrilateral and hexahedral meshes,
which are difficult to deal with severe surface fluctuations.
Although SEM can now successfully apply triangular and tetrahe-
dral meshes, the mass matrices are no longer diagonal, which in-
crease the programming difficulty and computational cost.
However, the DG method is flexible and convenient to use trian-
gular or tetrahedral meshes.

In this study, we extend the weighted RKDGmethod to simulate
wave propagations in 2D TI media. An explicit weighted two-step
iterative Runge-Kutta method is used as time-stepping algorithm,
and the spatial discretization is based on the DG formulations using
the local Lax-Friedrichs numerical flux. We first outline the wave
equations for general anisotropic media. Then, the weighted RKDG
scheme will be stated, with the notice to deal with boundaries.
Some numerical examples are finally provided to validate this
method.

2. Governing equations

The source-free elastic wave equation is given by (Aki and
Richards, 2002):

r
vV
vt

¼V,s; (1)
828
in which V ¼ ðvx; vy; vzÞT is the velocity vector, s is the stress
tensor, r ¼ rðx; y; zÞ is the density, and V ¼ ðvx; vy; vzÞ denotes the
gradient operator. Here, the divergence operator “V,” is imple-
mented on each row of s. According to Hooke's law, the stress-
strain constitutive relationship is:

0
BBBBBB@

sxx
syy
szz
syz
sxz
sxy

1
CCCCCCA¼Cε¼

0
BBBBBB@

c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

1
CCCCCCA

0
BBBBBB@

εxx
εyy
εzz
2εyz
2εxz
2εxy

1
CCCCCCA;

(2)

where C is the symmetrical elastic parameter matrix and ε is the
strain vector. For a general anisotropic medium, there are 21 in-
dependent elastic coefficients in C. The VTI medium is common in
real-world scenarios, which contains five independent parameters
c11, c13, c33, c44, and c66 with c12 ¼ c11 � 2c66. The elastic parameter
matrix C in the VTI medium is:

CVTI ¼

0
BBBBBB@

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

1
CCCCCCA: (3)

In a 3D TI medium with Oxyz Cartesian coordinate system (see
Fig. 1), the polarization angle q is the angle between the symmetry
axis and the z-axis, and the azimuth angle 4 is the angle between
the projection of the symmetry axis on the Oxy plane and the x-
axis. Then, with the two angles q and 4, the elastic parameter
matrix CTI for a general TI medium can be obtained by (Wu et al.,
2010; Kim et al., 2018):

CTI ¼ M4MqCVTIM
T
qM

T
4; (4)



0:

X.-J. He, J.-S. Li, X.-Y. Huang et al. Petroleum Science 20 (2023) 827e839
where the transformation matrices Mq and M4 are defined as:

Mq ¼

0
BBBBBBBBBBBBBBBBBB@

cos2 q 0 sin2 q 0 �sin 2q 0

0 1 0 0 0 0

sin2 q 0 cos2 q 0 sin 2q 0

0 0 0 cos q 0 sin q

sin 2q
2

0 �sin 2q
2

0 cos 2q 0

0 0 0 �sin q 0 cos q

1
CCCCCCCCCCCCCCCCCCA

M4 ¼

0
BBBBBBBBBBBBBBBBBB@

cos2 4 sin2
4 0 0 0 �sin 2 4

sin2
4 cos2 4 0 0 0 sin 2 4

0 0 1 0 0 0

0 0 0 cos 4 sin 4 0

0 0 0 �sin 4 cos 4 0

sin 2 4

2
�sin 2 4

2
0 0 0 cos 2 4

1
CCCCCCCCCCCCCCCCCCA

:

(6)

In 2D case, we assume that all the variables vary in the xz plane,
then the partial derivatives with respect to y vanish. The source-
free 2D three components form of Eq. (1) is given by:

r
v

vt

0
@ vx

vy
vz

1
A�V ,

0
@ sxx sxz

sxy syz
sxz szz

1
A¼0; (6a)

and the stress equations varying with time are:

v

vt

0
BBBB@

sxx
szz
syz
sxz
sxy

1
CCCCA�V ,

0
BBBB@

c11vx þ c16vy þ c15vz c15vx þ c14vy þ c13vz
c13vx þ c36vy þ c35vz c35vx þ c34vy þ c33vz
c14vx þ c46vy þ c45vz c45vx þ c44vy þ c34vz
c15vx þ c56vy þ c55vz c55vx þ c45vy þ c35vz
c16vx þ c66vy þ c56vz c56vx þ c46vy þ c36vz

1
CCCCA¼

(7)

Here,V ¼ ðvx; vzÞ now is the 2D gradient operator. As can be seen, in
such a case the P-SV and SH waves are coupled (Zhu and Dorman,
2000; Sun et al., 2016). For simplicity of presentations, we define
W ¼ ðsxx; szz; syz; sxz; sxy; vx; vy; vzÞT and introduce the following
notations:
A1 ¼

0
BBBBBBBBBB@

0 0 0 0 0 c11 c16 c15
0 0 0 0 0 c13 c36 c35
0 0 0 0 0 c14 c46 c45
0 0 0 0 0 c15 c56 c55
0 0 0 0 0 c16 c66 c56
1=r 0 0 0 0 0 0 0
0 0 0 0 1=r 0 0 0
0 0 0 1=r 0 0 0 0

1
CCCCCCCCCCA
;A2 ¼

0
BBBBBBBBBB@

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1=r
0 1=r 0
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then Eqs. (6) and (7) have a concise and compact form:

vW
vt

�V , ðA1W;A2WÞ¼0; (9)

where the item ðA1W;A2WÞ is called the flux.
For a 2DVTI medium, the stress equations varying with time can

be decoupled:

v

vt

0
B@

sxx

szz

sxz

1
CA�V ,

0
B@

c11vx c13vz
c13vx c33vz
c55vz c55vx

1
CA¼0，

v

vt

�
syz

sxy

�
�V ,

�
0 c44vy

c66vy 0

�
¼0:

(10)

Then, according, we have the following two equations:

r
v

vt

�
vx

vz

�
�V ,

�
sxx sxz

sxz szz

�
¼0;

v

vt

0
B@

sxx

szz

sxz

1
CA�V ,

0
B@

c11vx c13vz
c13vx c33vz
c55vz c55vx

1
CA¼0;

(11)

and

r
v

vt

�
vy
��V,

�
sxy syz

�¼0;
v

vt

�
syz
sxy

�
�V,

�
0 c44vy

c66vy 0

�
¼0;

(12)

for the P-SV and SH waves, respectively. For the VTI media, an
equation system similar to Eq. (9) can be obtained. The detail is not
shown here to avoid lengthy descriptions.
3. Numerical scheme

3.1. Spatial discretization

We consider a domain U2R2, which is discretized into con-
forming elements with U ¼ ∪

i
Ui. Next, we define a scalar test

function space:

Vh ¼
n
42 L2ðUÞ : 4jUi

2 PkðUiÞ;ci
o
; (13)

where Pk denotes the polynomial space at most k-th order. Multi-
plying both sides of Eq. (9) by a scalar test function 4ðx; zÞ and
integrating over Ui, we have:
0 0 c15 c14 c13
0 0 c35 c34 c33
0 0 c45 c44 c34
0 0 c55 c45 c35
0 0 c56 c46 c36
1=r 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCCCCCCCA
; (8)
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ð
Ui

�
4
vW
vt

�4V , ðA1W;A2WÞ
�
dV ¼0: (14)

Using the divergence theorem, we obtain:

ð
Ui

�
4
vW
vt

þðA1W;A2WÞ,V4
�
dV�

ð
vUi

4ðA1W;A2WÞ,n dS¼0;

(15)

where n ¼ ðn1;n2ÞT is the normal vector. In the DG framework,W is
allowed to be discontinuous at vUi, so the item ðA1W;A2WÞ, n
should be modified and replaced by the numerical flux. We use the
local Lax-Friedrichs numerical flux, which replaces ðA1W;A2WÞ, n

by bA int
Wint þ bAext

Wext, where Wint and Wext the traces of W on
vUi, and

bAint ¼ 1
2
�
A1n1 þ A2n2 þ yvUi

I
�
;

bAext ¼ 1
2
�
A1n1 þ A2n2 � yvUi

I
�
:

(16)

Here, I is the identity matrix, and yvUi
is a parameter called the

numerical viscosity which can be evaluated as the largest speed on
vUi.

To load the free surface boundary condition, we can take an
exterior velocity wavefield that is identical to the interior wave-
field, and impose an opposite stress wavefield. As a result, we can
keep a continuous velocity and a zero stress on the free surface
(Etienne et al., 2010). To load the absorbing boundary condition

(ABC), we let bAext
Wext ¼ 0. Mathematically, it means that the

external waves are not allowed to enter the domain. It is worth
noting that this is the simplest way to deal with the ABCs, but the
absorption effect of this treatment is not very good, as will be seen
later in the modeling example.

We now turn to the basis expansion ofW. First, we expressW as:

W jUi
¼

XN
l¼1

CilðtÞ4i
l; (17)

where f4i
lg N

l¼1 are the time-independent basis functions, fCi
lðtÞg

N
l¼1

are the coefficients of the unknowns, and N is the number of basis
functions. There are many options for the choice of f4i

lg N
l¼1 (de

Basabe et al., 2008; de la Puente, 2008). Numerical tests show
that all commonly used basis functions are applicable. We then
combine Eqs. (15)e(17) to obtain the following semi-discrete
scheme:
XN
l¼1

vCilðtÞ
vt

∬ Ui
4i
l4

i
l0dV�

XN
l¼1

A1C
i
lðtÞ∬ Ui

4i
l
v4i

l0

vx
dV�

XN
l¼1

A2C
i
lðtÞ∬ Ui

4i
l
v4i

l0

vz
dVþ

XN
l¼1

X
j

bA int
CilðtÞ

ð
Ui∩Uj

4i
l4

i
l0dlþ

XN
l¼1

X
j

bAext
CjlðtÞ

ð
Ui∩Uj

4
j
l4

i
l0dl¼0

l
0 ¼1;…;N;ci

;

(18)
830
in which Uj is the adjacent element of Ui.
3.2. Time discretization

After the DG spatial discretization, we obtain the semi-discrete
scheme in Eq. (18), which is now an ordinary differential system.
For simplicity of notations, we use a vector CðtÞ to denote all the
coefficients, and use a linear operator L to denote the DG formu-
lations of spatial discretization, then Eq. (18) can be expressed as:

vC
vt

¼ LðCÞ: (19)

Here, we use a weighted explicit Runge-Kutta method to solve Eq.
(19) (He et al., 2015), which says:

Cðnþ1Þ ¼CðnÞ þ Dt
2

�
KðnÞ þK

ðnÞ�
; (20)

where KðnÞ and K
ðnÞ

are two intermediate variables, which are
evaluated using the following two equations:8>>>>>>>><
>>>>>>>>:

KðnÞ
0 ¼ L

�
CðnÞ

�
KðnÞ
1 ¼ rDtL

�
KðnÞ
0

�
þ L

�
CðnÞ

�
KðnÞ
2 ¼ rDtL

�
KðnÞ
1

�
þ L

�
CðnÞ

�
KðnÞ ¼ hKðnÞ

2 þ ð1� hÞKðnÞ
1

; (21)

and

8>>>>>>>>>>><
>>>>>>>>>>>:

TðnÞ ¼ CðnÞ þ ð1� 2rÞDtKðnÞ

K
ðnÞ
0 ¼ L

�
TðnÞ

�
K
ðnÞ
1 ¼ rDtL

�
K
ðnÞ
0

�
þ L

�
TðnÞ

�
K
ðnÞ
2 ¼ rDtL

�
K
ðnÞ
1

�
þ L

�
TðnÞ

�
K
ðnÞ ¼ hK

ðnÞ
2 þ ð1� hÞKðnÞ

1

; (22)

where r ¼ ð3 �
ffiffiffi
3

p
Þ=6, and h2½0;1� is a weighting factor.

It should be noted that some time-stepping scheme cannot
obtain stable full-discrete numerical schemes when combining
with DG space discretization formulations. For example, He et al.
(2019a) studied the stability conditions for the arbitrary high-
order derivative (ADER) time-stepping method (K€aser and
Dumbser, 2006; de la Puente et al., 2007) and the weighted
Runge-Kutta method. They found that the ADER time-stepping
method with the centred flux DG formulation is unstable, but the
weighted Runge-Kutta method is stable and robust that matches



Fig. 2. Rectangular and triangular elements (He et al., 2019a).

Table 1
The CFL condition numbers for the weighted RKDG method.

h 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P1 rec 0.592 0.668 0.818 1.04 0.982 0.784 0.676 0.61 0.562 0.528 0.5
tri 0.344 0.388 0.476 0.575 0.570 0.456 0.393 0.354 0.326 0.306 0.290

P2 rec 0.224 0.232 0.242 0.254 0.27 0.292 0.324 0.32 0.294 0.276 0.262
tri 0.139 0.145 0.151 0.159 0.169 0.182 0.203 0.194 0.179 0.168 0.159

Fig. 3. The CFL condition numbers of the weighted RKDG method for h varying from
0 to 1.
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well with most DG methods. He et al. (2019a) also showed that the
weighted Runge-Kutta method introduced smaller numerical
dispersion than the popular ADER time-stepping method. More-
over, the weighted Runge-Kutta method introduces a weighting
factor, which allows the stability condition number to be optimized.
We can choose the optimal weighting factor to maximize the sta-
bility condition number.
4. Stability

Next, we derive the numerical stability conditions for the
weighted RKDG method to solve the elastic equations in aniso-
tropic media. We use the Courant-Friedrichs-Lewy (CFL) condition
831
number amax, to constrain the selections of the spatial step h, the
time step Dt, and the wave speed c. These parameters need to
satisfy the following inequality: Dt � amax

h
c, in which amax is also

called the maximum Courant number. Here, we do not intend to
perform a detailed and lengthy stability analysis of the anisotropic
media, but instead we use the results of existing studies conducted
by He et al. (2015, 2019a), in which they provided the stability
conditions of the scalar wave equation for the uniform rectangular
and triangular meshes (shown in Fig. 2). In Table 1, we list the
values of amax for the two meshes with h between 0 and 1 at an
interval of 0.1. We see from Table 1 that as the weighting coefficient
h changes from 0 to 1, amax tends to increase first and then
decrease. We also plot the maximal Courant numbers for the
weighting factor h in Fig. 3. More detailed calculation for a finer
sampling of h (at an interval of 0.01) shows: for the P1 case with a
rectangularmesh, h¼ 1 gives the smallest amax with amaxz0:5, and
h ¼ 0.36 gives the largest amax with amaxz1:096. For the P1 case
with a triangular mesh, h ¼ 1 gives the smallest amax with
amaxz0:290, and h ¼ 0.37 gives the largest amax with amaxz0:624.
For the P2 case with a rectangular mesh, h ¼ 0 gives the smallest
amax with amaxz0:224, and h ¼ 0.63 gives the largest amax with
amaxz0:338. For the P2 case with a triangular mesh, h¼ 0 gives the
smallest amax with amaxz0:139, and h¼ 0.63 gives the largest amax

with amaxz0:208. Then, to obtain a larger time step, for the P1 case
with rectangular mesh, we can use h ¼ 0.36; for the P1 case with
triangular mesh, we can use h ¼ 0.37; for the P2 case with rectan-
gular and triangular meshes, we use h ¼ 0.63.

In the above stability conditions for the triangular mesh, the side
length h of the triangle in Fig. 2b is used. If we use the diameter d of
the inscribed circle in the triangle in Fig. 2b, then the time step
needs to satisfy the following condition:

Dt � a
0
max min

�
h
c

�
z

�
1þ cotðp=8Þ

2

�
amax min

�
d
c

�
: (23)

In actual numerical calculations, we find that Eq. (23) is a good
estimate for the time step.



Fig. 4. Wavefield snapshots at T ¼ 0.7 s in the VTI model. (a) and (b) show the vx and vz wavefields obtained using the weighted RKDG method; (c) and (d) show the vx and vz
wavefields obtained using the SG method. The 30 m � 30 m rectangular mesh is used.
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The above results are applicable to the acoustic equation. In fact,
we can directly use Eq. (23) to obtain an effective stability condition
appropriate for anisotropic media. We just need to replace the
acoustic wave velocity in Eq. (23) with the maximum velocity in all
directions in the anisotropic media. Numerical experiments show
that this treatment works well, but we have no theoretical proof.
5. Modeling examples

We now present some numerical modeling tests to demonstrate
the effectiveness of the weighted RKDG method for solving elastic
wave equations in anisotropic media. Before proceeding further, we
remark that high-order DG methods (Pk, k > 2) have small CFL
condition numbers and expensive computing costs, so, here we use
the P2 weighted RKDG method.
5.1. Homogeneous VTI model

The first example simulates the P-SV wave propagation in a
homogeneous VTI medium. The elastic parameters are c11 ¼ 44:8
832
GPa, c13 ¼ 9:5 GPa, c33 ¼ 37:6 GPa, and c55 ¼ 11:8 GPa. We set the
density r ¼ 1:0 g/cm3. The computational domain is a square with
side length of 9 km. We set the source at (4.5 km, 4.5 km) with the
source function:

f ðtÞ ¼
�
1� 2ðpf0ðt � t0Þ Þ2

�
exp

�
� ðpf0ðt � t0Þ Þ2

�
; (24)

inwhich t0 denotes the delay timewith t0 ¼ 1/f0 and f0 ¼ 20 Hz. The
30 m� 30 m rectangular mesh is used. We carry out the simulation
using the weighted RKDG method with a weighting factor h ¼ 0:63
to allow for the maximum stable time step amaxz0:338. The
maximum velocity in the anisotropic medium is c ¼ 6.693 km/s.
Then, according to Eq. (23), we have Dtz 1.512 ms.

Fig. 4 presents the snapshots at T ¼ 0.7 s. We compare our
modeling results with those generated by the fourth-order stag-
gered grid (SG) method (Virieux, 1986) using the same parameters.
The anisotropy of wave propagation is clearly seen in Fig. 4a and b.
However, there is serious numerical dispersion for the SG method
in Fig. 4c and d. If the SG method achieves the same effect as our
method, a finer mesh (7.5 m � 7.5 m) is needed. In this case, these



Fig. 5. Synthetic waveforms at T ¼ 0.7 s for the VTI model. (a) vx and (b) vz are obtained using the two methods on the same coarse mesh (30 m� 30 m), whereas (c) vx and (d) vz are
obtained using the weighted RKDG method on coarse mesh (30 m � 30 m) and the SG method on fine mesh (7.5 m � 7.5 m).
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two methods produce the similar snapshots of the seismic waves
without visible numerical dispersion. We also set a receiver at
(4.5 km, 5.7 km) to record the waveforms. Fig. 5 presents the syn-
thetic waveforms of the two methods. Overall, we see that the
weighted RKDG solutions on coarse mesh match the SG solutions
on fine mesh, validating the correctness and effectiveness of our
method.

Next, we compare the calculation and storage of the two
methods. We carry out the simulations on the same personal
computer. It takes 9955 s for the weighted RKDG method to finish
the simulation on coarse grid, whereas it takes only 788 s for the SG
method on fine grid. We see that the DGmethod is computationally
expensive, compared with FDM. Considering the storage, the
weighted RKDG method takes up approximately 16.5 Mb, and the
SGmethod takes up nearly 132Mb. The reason for the small storage
of the DG method is that it uses coarse grids but produces small
numerical dispersion. Combined with the non-uniform unstruc-
tured mesh techniques (e.g., coarse mesh for high velocity areas
and fine mesh for low velocity areas), the DG method can signifi-
cantly reduce the size of the problem, thereby reducing the amount
of memory and computation. However, the conventional FDM can
only use a uniform fine mesh for the non-uniform velocity model,
833
which leads to a large amount of storage and calculation.
To test the effect of our ABC combined with the weighted RKDG

method, we extend the simulation time to T ¼ 0.9 s and 1.1 s. Fig. 6
shows the wavefield snapshots, from which we observe that the P
wave has propagated to the boundary and is reflected. It is seen
from the figure that our ABC can absorb most of the wave energy
reflected by the boundary, but as shown by the arrow in the figure,
we still observe the existence of some weaker reflected waves. This
example shows that our ABC has a certain absorbing effect, but the
effect is not perfect. We will try other kinds of ABCs in the future,
such as perfectly matched layers.

5.2. TTI model with titled slope

In this example we consider a 2D Lamb problem (Lamb, 1904).
The physical domain stretches 4 km in the x axis, and the depth of
the left boundary is 2 km in the z axis with a slope of a tilt angle
q ¼ 10o. Here, we choose the elastic material parameters as:
r ¼ 2.1 g/cm3, c11 ¼ 25.2 GPa, c12 ¼ 12.0 GPa, c13 ¼ 6.0 GPa,
c33¼15.0 GPa, c44¼ 4.38 GPa, and c66¼ 6.6 GPa. The corresponding
TTI model is obtained by tilting the symmetry axis of the VTI by
q ¼ 10o. We divide the entire computational area into 23864



Fig. 6. Wavefield snapshots at T ¼ 0.9 s and 1.1 s in the VTI model. (a) and (b) show vx and vz wavefields at T ¼ 0.9 s; (c) and (d) show vx and vz wavefields at T ¼ 1.1 s. The areas
pointed by the arrow indicate that there are still some reflections from the boundary.
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triangles, and the diameter of the smallest inscribed circle is
d z 14 m. According to the elastic parameters in this experiment,
the maximum wave speed in the anisotropic medium is
c ¼ 3.464 km/s. We carry out the simulation using the weighted
RKDG method with h ¼ 0.5. In this case amaxz0:182. Then, ac-
cording to Eq. (23), we have Dtz 1.265 ms. We set a Ricker wavelet
source on the surface of the slope, and the location coordinates are
(1.720 km, 2.303 km) with frequency f0 ¼ 12 Hz.

Fig. 7 presents the snapshots of the three-components of the
velocity fields in the TTI medium at times T ¼ 0.35 s and 0.55 s.
From the snapshots we can clarify the anisotropic features of the
propagation. For vx (panels a and b) and vz (panels e and f) com-
ponents, we see that the P-SV waves is decoupled from the SH
wave. The transverse symmetry axis has an inclination of 10o

relative to the horizontal plane, just parallel to the slope. Fig. 7c and
d shows the vy components, from which the anisotropy and tilt
features are also very clear. The snapshots in the figure have no
visible numerical dispersion, demonstrating that our method can
handle wave propagation in TTI media correctly.
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5.3. VTI and TTI models with surface topography

In this example, we investigate elastic wavefields in VTI and TTI
media with surface topography. The model is a Gaussian hill (we
note that this model has been used by He et al., [2020b] to study the
acoustic wave propagation). We discretize the physical domain by
31901 triangles, and the diameter of the smallest inscribed circle is
d z 18.3 m. We carry out the simulation using the weighted RKDG
method with h ¼ 0.63 to allow for the maximum stable time step
amaxz0:208. The time step is Dtz 1.768 ms. We use a Ricker
wavelet source with peak frequency f0 ¼ 12 Hz, and its location
coordinates are (3.6 km, 2.4 km). In the first case we consider a VTI
medium with the elastic material parameters: r ¼ 3.0 g/cm3,
c11 ¼ 40.5 GPa, c12 ¼ 23.4 GPa, c13 ¼ 12.8 GPa, c33 ¼ 27.0 GPa,
c44 ¼ 6.75 GPa, and c66 ¼ 8.55 GPa. Then, we rotate the symmetry
axis of the VTI medium and obtain two TTI media: case 1 with
q ¼ 30o, 4 ¼ 0o and case 2 with q ¼ 30o, 4 ¼ 45o. In case 2, the 21
elastic material parameters are non-zero.

Figs. 8 and 9 presents the snapshots at T ¼ 0.35 s and 0.8 s,



Fig. 7. Snapshots of the three-components velocity fields in the TTI medium at time T ¼ 0.35 s (a, c and e) and T ¼ 0.55 s (b, d and f). (aeb): vx; (ced): vy; (e-f): vz. Note that the
symmetry axis has a q ¼ 10o tilt angle.

X.-J. He, J.-S. Li, X.-Y. Huang et al. Petroleum Science 20 (2023) 827e839
respectively. From the two figures, we can see the obvious aniso-
tropic features of wavefields. We see that the P-SV and SH wave-
fields are separated for VTI and TTI case 1. But, for the TTI medium
in case 2, the P-SV and SH waves are coupled. The numerical results
demonstrate that the weighted RKDG method can simulate wave
propagation for the complicated TTI model with surface
topography.

In addition, we compare the computation cost of our method for
the three media - VTI, TTI case 1, and TTI case 2. On the same
835
computing platform, the CPU times required to simulate the wave
propagation to T ¼ 0.8 s in the three media are 229 s, 236 s and
256 s, respectively. We see that TTI case 2 costs the longest time and
VTI costs the shortest. This is reasonable because the elastic
parameter matrix C (in Eq. (3)) of TTI case 2 is the densest with 36
non-zero entries, which introduces more partial derivatives and
more computation. The elastic parameter matrix C of TTI case 1 has
20 non-zero entries, and VTI has 12 non-zero entries. We see that
although the elastic matrix C in TTI case 2 and TTI case 1 are much



Fig. 8. Wavefield snapshots at T ¼ 0.35 s for the VTI and TTI media. (a), (d) and (g): vx; (b), (e) and (h): vy; (c), (f) and (i): vz. (a), (b) and (c) are for the VTI medium; (d), (e) and (f) are
for the TTI medium with q ¼ 30o, 4 ¼ 0o; (g), (h) and (i) are for the TTI medium with q ¼ 30o, 4 ¼ 45o.

Fig. 9. Wavefield snapshots at T ¼ 0.8 s for the VTI and TTI media. Panels are the same as in Fig. 8.
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Fig. 10. The elastic parameter c11 of the heterogeneous Canadian foothills model.

Fig. 11. Part of the mesh for the heterogeneous Canadian foothills model.

Fig. 12. Snapshots of the wavefields in the TTI medium for the Canadian foothills
model at T ¼ 0.6 s. (a), (b), and (c) show the vx, vy, and vz components, respectively.
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denser than VTI, the CPU times are only 12% and 3% more. This
demonstrates that ourmethod is computationally efficient for wave
modeling in complex TTI media.

5.4. Heterogeneous canadian foothills model

In this example, the weighted RKDG method is applied to the
seismic elastic wave simulations of rugged topographic surface in
complex heterogeneous TTI medium. Here, we use a part of the
classic Canadian foothills model, which belongs to the thrust fault
structures in northeastern British Columbia, Canada, and is widely
used to test the surface topography (Liu et al., 2017; Qiu et al., 2020;
Shragge and Konuk, 2020). We choose a horizontal extension dis-
tance of 12.495 km and a vertical depth of 4.542 km. The surface
has large undulations, with a maximum undulation depth of
approximately 1.5 km. For this model, we use a TTI medium which
is obtained by rotating the VTI medium with q ¼ 30o, 4 ¼ 0o. The
distribution of the elastic parameter c11 is shown in Fig. 10. We see
that this model not only has heterogeneous layered structures in-
side, but also contains some faults. The speed varies from 3.8 km/s
to 5.7 km/s. Other elastic parameters are set as follows: r ¼ 2.0 g/
cm3, c12¼ 0.57c11, c13¼ 0.32c11, c33¼ 0.67c11, c44¼ 0.17c11, and c66¼
(c11 - c12)/2.

Because the model has large fluctuations on the surface, we
divided the domain with an irregular triangular mesh. A total of
86,414 triangular elements are used, and the number of vertices is
43,960. Fig. 11 shows the mesh division of a local area with large
drop. We see a denser mesh near the surface than that in the
subsurface. Since the elastic parameters of the original Canadian
foothills model is defined on the equidistant rectangular grid
points, here we use an interpolation method to convert the elastic
parameters on the rectangular grid points into triangular elements.
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The side length of the triangular elements we used did not exceed
35 m. The minimum value of d/c in Eq. (23) is approximately
1.334� 10�3.We carry out the simulation using theweighted RKDG
method with h ¼ 0.63, then amaxz0:208. According to Eq. (23), the
time step is 4.737� 10�4. We use a Ricker wavelet source with peak
frequency f0 ¼ 20 Hz, and its location coordinates are (6.0 km,
3.5 km). Free surface boundary conditions are used for the surface
boundary of the model.

Figs. 12 and 13 exhibit the resulting wavefields at T ¼ 0.6 s and
0.9 s, respectively. The two simulations lasted for 3072 s and 2049 s,
respectively, in an Intel Xeon X5670 2.93 GHz processor. In the two
figures, panel (a) shows the vx component, panel (b) shows the vy
component, and panel (c) show the vz component. The scattering of
the wavefields due to the irregular surface topography can be
clearly seen from the figure. The elastic wavefield energy varies due
to the internal heterogeneous velocity structures, with energy be-
ing enhanced in some areas and weakened in other areas. This
example shows that the weighted RKDG method is capable of
simulatingwavefields in complex heterogeneous anisotropic media
with surface topography.
6. Conclusions and discussions

We develop a weighted RKDG approach for simulate elastic
wavefields in 2D TI media. Both VTI and TTI media are considered.



Fig. 13. Snapshots of the wavefields in the TTI medium for the Canadian foothills
model at T ¼ 0.9 s. (a), (b), and (c) show the vx, vy, and vz components, respectively.
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This method is also applicable to all general anisotropic media. The
unstructured triangular meshes in 2D case are used for simulations.
The effectiveness of this method is demonstrated by several nu-
merical examples in homogeneous and heterogeneous media with
regular and irregular geometries. We also compare the numerical
results of our method with the classic SG method in the homoge-
neous VTI model. It is shown that our method can reduce the nu-
merical dispersion on coarse grids with higher computational cost
and smaller memory storage compared to the classical SG method.
Moreover, we believe that theweighted RKDGmethod is promising
for wave simulation in various complex heterogeneous anisotropic
media by using non-uniform meshes, that is, in the low velocity
regionwe can use a dense mesh, and in the high velocity region we
can use a coarse mesh. Then, we can avoid using dense meshes in
all regions, which will greatly reduce the number of meshes and
increase the time step. Therefore, the weighted RKDG method can
improve the computational efficiency of the simulations in het-
erogeneous anisotropic media. Furthermore, since high-
performance computing can significantly improve the computing
efficiency, we will parallelize our method to solve the wave prop-
agation problems in TI media in future research.
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