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ABSTRACT

The information from sparsely logged wellbores is currently under-utilized in reservoir simulation
models and their proxies using deep and machine learning (DL/ML). This is particularly problematic for
large heterogeneous gas/oil reservoirs being considered for repurposing as gas storage reservoirs for CHy,
CO, or H; and/or enhanced oil recovery technologies. Lack of well-log data leads to inadequate spatial
definition of complex models due to the large uncertainties associated with the extrapolation of pet-
rophysical rock types (PRT) calibrated with limited core data across heterogeneous and/or anisotropic
reservoirs. Extracting well-log attributes from the few well logs available in many wells and tying PRT
predictions based on them to seismic data has the potential to substantially improve the confidence in
PRT 3D-mapping across such reservoirs. That process becomes more efficient when coupled with DL/ML
models incorporating feature importance and optimized, dual-objective feature selection techniques.

© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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1. Introduction

The gas and oil industry typically drills exploration and dis-
covery appraisal wells with comprehensive well-logging with
whole-rocks cores of the prospective reservoir sections often
recovered. However, for cost and time reasons, it does not do this
for most of the field development wells that are subsequently
drilled to develop its discovered resources. Most field development
wells are characterized by not being cored and recording only a
basic suite of petrophysical well logs. The sparse petrophysical logs
recorded in such wells are typically caliper (CAL), gamma ray (GR),
compressional acoustic travel time (DT), and sometimes bulk
density (PB). CAL is required to quantify borehole width and con-
ditions for casing cement programs; GR is used for determining the
main lithological formation boundaries and depth calibrations for
the placement of perforations; and DT and PB logs are used to
calibrate velocities and acoustic impedance with the available
seismic data. Around the world there are hundreds of thousands of
suspended and abandoned wells, drilled during the past seventy
years or more, for which such sparse logs, together with the
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mudlogging and drilling records, form the only available subsurface
information. This huge data resource is currently underutilized at a
time when there is a greater need than ever to improve the detailed
characterization of large previously exploited reservoirs for repur-
posed applications such as enhanced oil recovery (EOR), long-term,
carbon dioxide (CO,) storage and short-term hydrogen (H;) storage.

2. Requirements of heterogeneous reservoir characterization

Unfortunately, the sparse petrophysical well-log suites of
development wells, and many unsuccessful exploration wells, are
inadequate to meet the input requirements of most modern deep
and machine learning (DL/ML) and reservoir simulation models
applied to heterogeneous reservoirs. To adequately characterize
rock formations information is required regarding lithology, geo-
mechanical properties, pressures and sub-surface stress distribu-
tions. While laboratory analysis of whole-rock cores can provide
such information with limited uncertainty for a few wellbores
spread across a formation of interest, there is never enough core
recovered to adequately determine these properties across the
entire areas of commercial-scale gas/oil-bearing reservoirs. Petro-
physical well-logs, calibrated with the available but limited core
data, are now routinely used to predict those properties in non-
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cored wellbores. However, this is difficult in wellbores where only
two or three petrophysical logs have been recorded in addition to
drilling data.

Many large subsurface reservoirs, particularly those associated
with carbonate and coal formations, are composed of heteroge-
neous and anisotropic lithologies. To capture the complexity of
such reservoirs in 3-D models, reservoir-property data must be
incorporated from as many spatial locations as possible. A common
problem is that inadequate well-log data exists from most of the
wellbores drilled to provide detailed lateral and vertical distribu-
tion maps of the heterogeneities present. The focus of industry and
academia has shifted in recent years more towards the evaluation
of enhanced gas and oil production developments, and the rede-
ployment of depleted, and partially depleted, gas/oil reservoirs for
CO, or H; storage. The storage capacities and efficiency of CO,
storage is substantially influenced by reservoir heterogeneity
(Sundal et al., 2014), and the same is also the case for H;, storage
(Davoodi et al., 2025). Capillary trapping of gases (CH4, CO», or Hy)
injected into reservoirs, which depends to an extent on the buoy-
ancy of the gas involved relative to the prevailing reservoir fluids
and can be substantially influenced by small-scale reservoir het-
erogeneities (Krishnamurthy et al., 2017). To understand and opti-
mize reservoirs for such processes and usages, it is imperative to
understand in detail how reservoir porosity, permeability, capillary
pressure, fluid saturations and movements are impacted by het-
erogeneities. Hence, methods that make it possible to extract more
information from sparsely logged historical wells are highly
desirable.

Petrophysical rock typing (PRT) has become a popular technique
for characterizing the heterogeneity of reservoirs in terms of their
core-derived rock, geomechanical and formation fluid properties
(Mohammadian et al., 2022). PRT, once defined, can be used to map
the efficiency of fluid movements in different reservoir zones, as
defined by hydraulic flow units (HFU) based on flow zone indicators
(FZI) (Kadkhodaie and Kadkhodaie, 2018). Key variables used to
distinguish PRT/HFU are porosity, permeability, capillary pressure,
fluid saturations and irreducible fluid saturations. Extrapolating
PRT/HFU across an entire reservoir using DL/ML techniques offers
an effective way of improving the performance of reservoir simu-
lation models (Djebbas et al., 2023).

High-pressure mercury intrusion capillary pressure (MICP)
laboratory analysis of available cores, coupled with unsupervised
cluster analysis, is now widely used to initially define PRT zones
that can be correlated from well to well (Jiao et al., 2020; Saki et al.,
2020). MICP data not only provides accurate determinations of
capillary pressure, but it also enables fractal dimensions of the
pore/fracture space to be calculated (Wang et al., 2024), which is
particularly useful for certain EOR and determining the potential of
a reservoir for repurposing as a CO,/H; storage facility. As well as
defining PRT and HFU, MICP data can be used to predict reservoir
permeability, water saturation and specific reservoir geo-
mechanical properties separately, and define PRT or HFU simply in
terms of porosity versus permeability relationships (e.g., Lucia
plots; Jennings and Lucia, 2003). However, due to the limited
availability of cores, those core-defined PRT zones and their asso-
ciated geomechanical properties require a suite of well-log data to
predict them in non-cored wells. In most sparsely logged devel-
opment wells, the available well-logs are insufficient to do this,
making it difficult to map reservoir heterogeneities in detail
throughout a reservoir.

The definitive determination of most reservoir geomechanical
properties requires core and/or specialist well-logs data (e.g. shear-
wave acoustic logs). Specialist logs are expensive to run and,
consequently, are only recorded in relatively few wells. Neverthe-
less, shear-wave acoustic logs can be reconstructed from a suite of
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other well-logs by DL/ML methods (Wood, 2020; Rajabi et al.,
2023). A number of geomechanical variables (e.g., Young's
modulus, Poison's ratio) and rock mechanics stress and strength
variables, obtained from uniaxial and triaxial laboratory core stress
test (e.g., uniaxial compressive stress (UCS), confined compressive
strength(CCS)) can also be predicted from suites of well logs (pet-
rophysical and drilling data) calibrated with core data (Davoodi
et al., 2023; Talkhouncheh et al., 2024). UCS and CCs are impor-
tant reservoir properties of interest in heterogeneous reservoirs as
their values vary non-linearly as porosity increase and fluid satu-
ration change (Shi et al., 2015). These variables are also influenced
by density and pore fluid saturation (Hassanvand et al., 2018).
Hence, the mentioned geomechanical variables are potentially
useful variables for characterizing reservoir PRT/HFU. Several geo-
mechanical and rock mechanics variables are also useful for tying
core-derived reservoir characteristics, predicted by well-logs, to
seismic data and attributes used for seismic amplitude-versus-
offset (AVO) analysis extracted from seismic data. Variables such
as compressional-wave and shear wave acoustic impedances,
compressional-wave/shear-wave velocity ratio, and Lamé-param-
eter relationships between those variables and rigidity (x) and
incompressibility (1) (e.g., Lambda-mu-rho, LMR variables;
Goodway, 2001) form useful links between core-derived PRT/HFU
and seismic attributes. Again, wells with only sparse suites of
recorded well logs are not generally involved in reservoir-wide
distribution mapping of the mentioned geomechanical/AVO
properties.

3. Extracting more useful data from sparsely logged
wellbores

An effective way to extract more information from the few
petrophysical logs recorded in sparsely logged wells is to calculate a
range of mathematical attributes for those logs available. This
approach was introduced to improve lithofacies predictions in
clastic reservoirs using only a single recorded gamma-ray (GR) log
and a selection of six well log attributes (Wood, 2022a). The tech-
nique was later expanded to calculate attributes for wells that had
recorded three well logs (GR, compressional acoustic log (DTc), and
bulk density (PB) and using the recorded logs plus the six attributes
for each of them (21 features in total) to improve lithofacies in a
heterogeneous carbonate reservoir (Wood, 2022b). The technique
has subsequently been successfully applied to predict other rock
characteristics, e.g., brittleness (Wood, 2023) and total organic
carbon (Wood, 2025). The success to date with the well-log-
attribute technique suggests that it is suitable for use to predict
core-measured and clustered PRT/HFU and a range of geo-
mechanical rock properties from a sparse suite of well logs. Such
predictions could then be used to establish PRT/HFU mapping
across heterogeneous reservoirs incorporating data from a larger
number of wellbores and correlating PRT/HFU clusters to seismic
attributes. This offers the potential to substantially reduce the un-
certainty that is currently associated with reservoir simulation
models of large, heterogeneous/anisotropic reservoirs.

Fig. 1 describes a workflow for calculating the attributes of
recorded well-logs from sparsely logged wells and using them as
input variables for DL/ML models to reduce the uncertainty in
extrapolating PRT/HFU spatially across extensive, sparsely logged,
heterogeneous reservoirs. The purpose and value of calculating
well-log attributes to compliment the data available from just a few
recorded well logs is particularly relevant to heterogeneous reser-
voir formations.

The six calculated well-log attributes extracted in applications of
the method to date, involve three related to the recorded well-log's
derivative and simple moving average of the first derivative, and
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Improved Workflow for Reducing Uncertainty in Heterogeneous Reservoir
Petrophysical Rock Typing (PRT) Models By Harnessing Well-log Attributes

Petrophysical and
rock mechanics
analysis of rock
cores from a few
reference wells

Callibration of

Extract well-log attributes

a suite of about five
well logs from the
reference wells to

predict the core-defined
PRT groups and

A

Cluster analysis
of core data to
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PRT/HFU groups

from the logs available
from sparsely logged wells
to increase spatial coverage
of the heterogeneous
reservoir

A 4

other variables using deep/
machine learning (DL/ML)

}

Apply trained DL/ML
model to predict PRT etc.
to the limited number
of non-cored wells
with five or more
recorded well logs

}

Calibrate the PRT groups
using available petrophysical/

A4

Conduct feature importance
analysis for the suite of
available logs and log attributes
using DL/ML models to predict
PRT groups etc derived from
core analysis of reference wells

h 4

Apply trained DL/ML models
with all available well-log
and attribute data

A 4

rock mechanics variables
to attributes of the available
seismic data

to predict PRT etc and calibrate
those predictions with
available seismic attributes

With relatively few wells
involved, uncertainty in
the spatial validity of the
derived reservoir models

Use available PRT predictions
from well and seismic data
to extrapolate PRT etc. spatially
throughout the studied reservoir
for use in reservoir-wide
characterization and
simulation models

With a greater number of well

locations sampled by harnessing
well-log attributes, uncertainty in
the spatial validity of the derived

is likely to be relatively
high

reservoir models should be much
reduced

Fig. 1. Workflow diagram for incorporating well-log attributes into PRT characterization of heterogeneous reservoirs. PRT refers to petrophysical rock type; HFU refers to hydraulic

flow unit.

three related to the recorded well-log's volatility. These attributes
can be calculated rapidly using simple mathematical formula
(Wood, 2022a), and can be applied to any well-log recorded over a
continuous depth interval. The formulas include some flexibility
that enable them to be adjusted to suit the degree of variability
observed in a recorded well log. There is also potential to calculate
additional attributes defined by simple mathematical relationships.
For instance, weighted moving average provides a flexible way of
assigning more, or less, weight to certain values in a specified
weighted-average interval. Alternatively, exponentially weighted
moving averages or centralized moving averages could also be
exploited as attributes. Each of these attributes captures slightly
different periodic characteristics from the recorded well logs. DL/
ML models can exploit these details when predicting, lithofacies,
geomechanical variables, PRT/HFU and other required well logs,
such as shear-wave acoustic travel time (DTs), when calibrated with
data from cores and/or specialist well-logs from a reference well
from a studied reservoir,

If a sparsely logged well has only recorded logs for DTc, GR and
PB available then calculating the six attributes for each of recorded
well logs plus the recorded log can generate twenty-one features
for evaluation as input variables to DL/ML models. It is likely,
depending on the target variable to be predicted and the range
reservoir characteristics contributing to the PRT/HFU distinguished,
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that only some of those features will substantially influence the
prediction models. Hence, it is worthwhile calculating multiple
well-log attributes and then conducting feature-influence and se-
lection analysis with respect to specific target variable predictions.
Such analysis establishes which combination of the well-log attri-
butes calculated and the recorded logs should be used to predict
each target variable of interest.

4. Feature influence and selection of well-log attributes

There are several methods available to conduct feature impor-
tance analysis on DL/ML datasets with a view to reducing their
dimensionality. Five models that generate different perspectives on
feature importance are:

e Least absolute shrinkage and selection operator(LASSO) linear
regression

Mean decline in impurity (MDI) from tree-ensemble ML models
Permutation feature importance (PFI)

Local Interpretable model-agnostic explanations (LIME)
Shapley additive explanations (SHAP)

LASSO provides insight into feature selection because its L1
regularization acts assign zero coefficients to the least influential
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features (MuthukrishnanRohini and Rohini, 2016). However, it
linear/parametric assumptions are not able to capture the non-
linear relationships typically associated with heterogeneous
reservoir dataset.

MDI is extracted from tree-ensemble ML algorithms by assess-
ing the frequency of involvement of each feature in the splitting
criteria applied at each tree branch (Scornet, 2021). However, MDI
feature values can be skewed by model scaling biases and over-
fitting of model training datasets.

PFI randomly shuffles the data value sequence of a dataset, one
feature at a time and assesses its impacts on prediction perfor-
mance metrics considering all data records. Developed originally
for the random forest algorithm (Breiman, 2001) it has subse-
quently been generalized (Fisher et al., 2018) and can be executed
rapidly for most datasets.

LIME involves introducing disturbances at certain points in the
feature space and monitoring their impacts on prediction perfor-
mance, by fitting linear models locally within the feature space and
weighting the impacts of each feature (Ribeiro et al., 2016). This
approach has some limitations with non-linear datasets, and unlike
SHAP does not identify the impacts of each data point, but it can be
executed more rapidly than SHAP (Mane et al., 2024).

SHAP quantifies the degree to which each input feature in-
fluences a model's predictions for every data point in a dataset
(Lundberg and Lee, 2017). It provides comprehensive model-
specific feature importance rankings (Lundberg et al, 2019).
However, it is complex and time-consuming to run on large data-
sets. This downside has led recently to the development of the
simplified SHAPG version (Zhao et al., 2024) which executes more
rapidly.

It is prudent to consider the feature importance results from at
least two of the mentioned methods and consider that LASSO and
LIME make parametric assumptions which may not work well with
heterogeneous reservoir datasets. Although these feature impor-
tance techniques provide useful guidance regarding feature selec-
tion for ML models, they do not establish exactly which
combination of features specific ML models would use to make
their optimum predictions. Hence, the is value in combining opti-
mizers with ML model to make such selections. Using multi-
objective optimizers to optimize two targets, prediction perfor-
mance of the dependent variable and the number of features
(Wood, 2022c). The output from such optimizers displayed as a
Pareto frontier comparing the performance of different feature
combinations.

The incorporation of such information derived from well-log
attributes, feature-influence analysis, and optimized feature se-
lection has the potential to substantially improve reservoir char-
acterization of producing reservoirs for potential repurposing as
EOR and gas storage facilities. The proposed methodology is
particularly appropriate for large, extensively drilled, heteroge-
neous reservoirs in which only a few wells have been cored, and the
log suites recorded in most wellbore are limited to less than about
five recorded well logs.
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